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Abstract. We present and evaluate a method for parameter selection and calibration for
evolutionary systems. The general goal of the method is to help distinguishing between
relevant and irrelevant algorithm parameters and to select good values for the relevant ones.
We apply the method to a number of di�erent problem instances (abstract �tness landscapes)
and test how well the settings generated by our method generalize. The parameter settings
obtained for problem A are then tested on problems B, C, etc.

1 Introduction

We have previously [1] introduced the Calibration and Relevance Estimation (CRE) method, a
numerical method that estimates the relevance of the di�erent parameters of an evolutionary
algorithm, in the process calibrating these parameters in a robust way.

The objectives of the CRE method are:

1. To estimate the relevance of each parameter, i.e., how sensitive the performance of the evolu-
tionary algorithm (EA) is to the exact calibration of each parameter.

2. To remove parameters that are irrelevant.
3. To calibrate the relevant parameters of an EA, i.e., to �nd good values for them.

The CRE method combines information theory with a particular Estimation of Density Algo-
rithm (EDA) that calibrates the parameters of an evolutionary algorithm. An EDA manipulates
distributions over parameter values and the CRE method uses the Shannon entropy of these dis-
tributions to measure the relevance of each parameter. By maximizing the Shannon entropy of
the EDA the CRE method can estimate the minimum amount of information that is necessary
to calibrate the parameters. The result is a quantitative measure of the minimum amount of cali-
bration needed for an algorithm to reach a certain performance level, and how this information is
distributed over the di�erent parameters.

The rationale behind this search for simple calibrations is that the simpler the calibration, the
broader the set of problems it can be applied to with success. That is, we expect that a simpler
calibration can be more easily adapted to a new problem, and we expect that a simpler calibration
is more robust against changes to the target application. This principle has long been known as
Occam's Razor and has been put on sound mathematical footing by the theory of algorithmic
complexity, formulated simultaneously by R. Solomono� [2], A. Kolmogorov [3] and G. Chaitin [4].

The CRE method was motivated by the complexity of the original application, namely the
simulation of agent behavior in a dynamic economic environment, and it was tailored to that
application. In this paper we present a cleaner version of the method and test it on a set of
abstract problems that we consider as a generalization of the application in our previous work. In
particular, we test how robust the results of the CRE method are, i.e., how useful the calibrated
parameters are when the target application is changed.

Related Work. Eiben e.a. established parameter control in EAs as an important research question
[5]. A practical method to �nd good parameter settings for an EA was introduced by François and
Lavergne in [6]. They use numerical simulations to estimate the functional relationship between
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parameter values and the performance of the EA, both for a single test case and for multiple test
cases (generalization)..

The groundwork of statistical experimental design was laid by R.A. Fisher in the 1920s and
1930s. Response surfaces methods that exploit sequential sampling were introduced in Box and
Wilson [7]. A paradigm shift that emphasizes parameter robustness is due to G. Taguchi [8].

Information theory and Shannon entropy were introduced by C. Shannon [9]. K. Kolmogorov
[3] developed algorithmic complexity as an uncomputable, yet precise, measure for parameter
robustness. The relation between Shannon entropy and algorithmic complexity is discussed by
Grünwald and Vitanyi [10].

2 The CRE Method

As discussed in the introduction, the main objective of the calibration and relevance estimation
method (CRE) is to �nd a set of relevant parameters, to �nd good values for these parameters,
and to establish how accurate these values have to be. One could say that we are after a good
evolutionary system that achieves a high performance not only in one particular test case, but in
as many other test cases as possible. Since we assume that this depends largely on the algorithmic
complexity of the model, we de�ne �good� as having a good tradeo� between performance and
algorithmic complexity. Thus, the quality of any given list of parameters and a speci�c vector
of values x for these parameters is determined by the performance F(x) obtained by running
experiments using x, and the information or algorithmic complexity K(x) necessary to specify x.
We start the formalization of this matter by de�ning the term calibration as a distribution over
parameter vectors.

Calibration. Let M = 〈θ1, . . . , θk〉 be a list of k parameters with an initial �nite3 domain of
possible values for each parameter θi and let XM stand for the Cartesian product of these domains.
Then a calibration is a distribution C(x) over all possible parameter settings x ∈ XM . We de�ne C0

to be the uniform distribution over XM . Cθ is be the marginal distribution of C(x) on parameter θ.

Calibration Performance. We can now de�ne calibration performance F(C) as the expected
performance when drawing the parameter settings from the calibration distribution C

F(C) = E
x∈XM

[C(x)F(x)] . (1)

Calibration Complexity. Algorithmic complexity as understood by A.N. Kolmogorov [3] is the
minimum amount of information needed to compute a vector of values x. While algorithmic com-
plexity itself is not computable, it is su�cient for our purpose to estimate it from the Shannon
entropy4 H(C) of the distribution C(x). The probability that the true algorithmic complexity K(x)
of any x chosen by the distribution C(x) is signi�cantly lower than the Shannon entropy of C(x) is
exponentially low [10] and can be neglected. We de�ne calibration complexity as

K(C) = H0 −H(C). (2)

where H0 is the average Shannon entropy of calibrations that the CRE produces when fed with
white noise. This will be explained shortly. Calibration complexity estimates the amount of addi-
tional information needed to calibrate a set of parameters, given that we have already speci�ed
a �nite parameter space XM . We use binary bits as the unit of Shannon entropy and calibration
complexity.

Minimax Calibration. Not all possible calibrations are equally interesting to us. Of all calibra-
tions that achieve a given performance we are only interested in those of the lowest complexity.

3If the initial domain is R we transform it by e.g. the sigmoid to make it �nite.
4Di�erential Shannon entropy is de�ned as H(C) = −

R
x
C(x) log C(x).
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Fig. 1. Diagram of the search method
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And of all calibrations of a given complexity we are only interested in those that achieve the highest
performance. While we assume that a calibration that satis�es both constraints generally does not
exist, it is essential that the CRE method comes reasonably close to producing minimax calibrations
because these are the only calibrations of any practical interest. We loosely de�ne an approximate
minimax calibration as a calibration Ci that has the following properties: no calibration Cj with
performance F(Cj) = F(Ci) is signi�cantly less complex (i.e. no K(Cj) � K(Ci)) and no calibration
Ck with complexity K(Ck) = K(Ci) can perform signi�cantly better (i.e. no F(Ck) � F(Ci)).

Conditional Marginal Contribution. At the heart of the CRE method lies a reliable estimation
of conditional marginal contribution of parameter values to performance. By this we mean the
contribution of the values of a speci�c parameter to performance (hencemarginal) if the distribution
of values over the other parameters are �xed by a speci�c calibration (hence conditional).

The Search Process. We use an iterative Estimation of Density Algorithm (EDA) that produces a
series of approximate minimax calibrations of increasing complexity and performance. Two features
are peculiar to this EDA: the density over the domains is constructed from overlapping uniform
distributions, and Shannon entropy is increased by letting more elementary uniform distributions
overlap.

As shown in �gure 1, we work with a pool O of p di�erent parameter settings x. These are ini-
tially drawn from C0, the uniform distribution over the �nite parameter space X . At each iteration
i we replace the oldest x from O by a new x drawn from the latest calibration Ci, calculated below.
Each x is applied once to the test case and we measure the performance F(x). We then rank all
x ∈ O according to performance and select the best q settings Bi.

The density of Bi is a good estimator of the conditional marginal contribution of the parameters
to performance: the higher the density over a certain range of a parameter, the higher the marginal
contribution of values from that range to performance, conditioned on the fact that the values for
the other parameters were chosen from the current and previous calibrations. We use the Shannon
entropy of this density to estimate parameter relevance. Figure 2 shows how the density of C(x)
over two parameters changes during a search. The Shannon entropy of the density of Bi decreases
fast for the parameter that speci�es the probability to innovate. There is no signi�cant reduction
in Shannon entropy for the parameter that speci�es the probability to rewire.

We use a two step process to generate the next distribution Ci+1 from the density of Bi. When
drawing a new x from Ci+1, we �rst draw a random member y ∈ Bi for each parameter θ ∈ M .
Next we determine the parameter range that is formed by the members ∈ Bi that are the hth

closest upper and lower neighbors of y along the parameter θ. We now determine the value of the
parameter for the new x by drawing a random value from this range.

When de�ning the order h of the upper and lower neighbors of y along θ, it is absolutely
essential that we use a value greater than 1. A value greater than 1 smoothes the density function
so that a slightly higher probability is given to parameter ranges where the density of Bi is lower.
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Fig. 2. Example of how the density of B changes during the search. The x-axis shows the number of
evaluations that the calibration is based on, the y-axis shows the parameter ranges. The solid line in the
middle shows the median of the respective distribution. The dashed lines show the 25th and the 75th

percentile. The graphs are taken from the test case with m = 10 and s = 0.

This minimizes the Shannon entropy of C and ensures that it is reasonably close to being a minimax
calibration.

To give an example, let us draw a new value for the chance to innovate. We �rst draw a random
y ∈ Bi, say with value 0.959. Assume the 5th closest neighbors ∈ Bi with regard to the innovation
rate have values 0.945 and 0.963. The �nal parameter value x for the innovation rate will now be
drawn from the uniform distribution [0.935�0.963].

Calculating Complexity. When measuring the calibration complexity, we need to correct for
the e�ects of noise. Due to the random nature of the algorithm, the Shannon entropy of the
density of Bi is always lower than the Shannon entropy of the uniform distribution, even when the
contribution to performance is uniform over all parameters. We can measure this trivial decrease
in Shannon entropy by replacing the performance measurements from actual test cases by white
noise and we found that for every parameter θ the resulting Shannon entropy Hθ is typically 1 bit
lower than the Shannon entropy of the uniform distribution over θ. Since we are only interested to
know how much the Shannon entropy of Ci di�ers from this trivial entropy level, we calculate the
calibration complexity of each parameter θ as K(Cθ) = Hθ −H(Cθ). And since the distribution of
Ci(x) is constructed form the marginal distributions Cθ

i (x), which therefore contain all necessary
information, we have K(Ci) =

∑
θ K(Cθ

i ).

Interpretation of the Results. As the search progresses, K(C) and F(C) increase continuously,
but not at equal rates. K(C) increases with a much more constant rate than F(C). The latter
usually increases in one, maybe two sharp rises, after which no signi�cant improvements are made.
Even so, K(C) might still increase by some 25%. We can compare the calibration of di�erent sets
of parameters and plot the minimum complexity needed for any given performance. If calibration
achieves equivalent performance with two di�erent sets of parameters, the set that achieves this
performance with less complexity will probably be of a more general value. We are also interested
in the Shannon entropy per parameter. The lower this Shannon entropy, the more information is
needed to calibrate the respective parameter. When applying the EA to a new problem, such a
parameter is more likely to be miss-calibrated than a low Shannon entropy one and consequently
deserves more attention from the practitioner.

The 25th and 75th percentile of the calibration distribution on each parameter are what we
consider the practical calibration of the CRE method: the values from this range have the highest
conditional marginal contribution. As long as the parameters of our EA stay within this range we
are con�dent of a high performance.

3 The Evolutionary Algorithm

We asses the robustness of results obtained from the CRE method by calibrating an evolution-
ary algorithm from agent-based economics where economic strategies evolve through innovation
and imitation in a social network. To avoid the complexity of an economic environment that the
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agents have to adapt to, we use an enhanced version of the Multimodal Problem Generator5 by
W. Spears [11] with two dimensions of hardness typical for economic problems: the landscape
ruggedness and the rate of change of this landscape. Ruggedness is measured by the number m of
peaks, represented by random binary strings. Rate of change is represented by the probability s
with which each bit of these binary strings �ip at each cycle of the simulation. For each hardness
we want to optimize the mean best �tness after 200 cycles of the simulation. We use 100 agents.

We use a discrete synchronous time model for the simulation where each cycle is divided into
four steps:

1. moving the peaks � by bit-�ip mutation of the strings that de�ne peaks
2. calculating the �tness � multiplying the Hamming distance of a strategy to the nearest peak

with the prede�ned height of that peak.
3. updating all strategies � by innovation and imitation
4. updating the network � agents can rewire their connections

Representation, Individuals and Population. It is important to note that in this EA agents
and strategies are not the same: an agent carries or maintains a strategy, but it can change its
strategy and we still consider it as the same agent. This dichotomy is necessary so that we can
maintain a social network (among the agents), while evolving, i.e., changing, the strategies. Because
every agent has exactly one strategy at a time, the number of active strategies is the same as the
number of agents. The population size (in the search space of strategies) is thus constant and
equals the number of agents.

Social Structure. The agents of our simulation are located in a complex bidirectional dynamic
network. This network is generated by a stochastic growth process prior to each run of the simu-
lation and can be changed by the agents during the simulation. Based on current theory on social
networks we ensure that this network has random connectivity [12], a high cluster coe�cient [13]
and a scale free degree distribution [14], actually a gamma distribution with an exponent between
2 and 3. The average connectivity is a free parameter of the evolutionary algorithm and varies
between 2 and 10.

Fitness and Selection. An agent is evaluated according to the strategy it carries. It is essential
to our model that the �tness of a strategy is determined by the performance of its hosting agent
relative to that of its peers in the social network. This implies that the structure of the social
network has a direct e�ect on the de�nition of �tness, hence on the selection mechanism.

We introduce three probabilistic selection mechanisms: one to decide whether a given strategy
will be changed by random innovation, one to decide whether it will be changed by imitation
(recombining it with the strategy of a peer in the network), and one to decide whether an agent
changes its position in the social peer network (rewiring). These choices are independent from
the �tness of the agent and are parametrized by three scalars ∈ (0, 1) that specify the respective
probabilities.

Innovation in our simulation is implemented by random bit-�ip mutation, introducing one
additional parameter that controls the probability for each bit to �ip. In the case of imitation the
agent needs to select a peer to be imitated, i.e., its strategy to be partially adopted. A parameter is
needed that controls the fraction of best performing peers to imitate from. Imitation is performed
by replacing one or more binary values of the the strategy of the imitating agent by values from the
strategy of the imitated agent, implemented by uniform crossover. The resulting strategy replaces
the strategy of the imitating agent, the strategy of the imitated agent remains the same. This
introduces one additional parameter to control the fraction of binary values that are replaced.

For rewiring we need to select the peer from which the agent disconnects, and a new agent to
which the agent connects (the total number of connections is constant). This calls for two more

5consisting of a search space of {0, 1}n and a number of peaks, which are randomly chosen binary target
strings. The �tness of a solution is its Hamming distance to the nearest target string, multiplied by the
height associated with that target string.
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parameters: the fraction of worst performing peers from which the agent randomly chooses the one
to disconnect from and the fraction of best performing agents (of the total population) from which
the agent can randomly choose a new peer.

Together with average connectivity, this makes 9 parameters that have to be calibrated. They
are shown in the �rst column of Table 1.

4 Experiments

Our strategy space consists of binary strings of length n = 100. We use three di�erent values
m = {1, 10, 1000} and three di�erent values s = {0, 0.001, 0.01}. With s = 0 the problem is static.
With s = 0.001 a target �ips a bit about once every ten cycles of the simulation and with s = 0.01
a target �ips about one bit every cycle. These combinations allow for 9 di�erent test cases.

For the CRE method we use a pool size of p = 100, from which we select the q = 50 as possible
parents for the next setting. To increase entropy we de�ne the uniform distributions over h = 5
neighboring values when drawing a new setting x. We use a total of 1000 evaluations, 100 of which
are used to evaluate the �rst �lling of the pool, and 900 for the iterative search. A calibration based
on 1000 evaluations leads to a signi�cantly improved performance for all test cases.

After we have calibrated the parameters on all test cases we apply the �nal result Ci of each
test case i to the other 9 test cases (including itself). We do so by uniformly drawing x 20 times
from what we consider the practical calibration: the range formed by the 25th and 75th percentile
of Ci. We measure the resulting performance Fi→j and compare it to the native performance Fj→j ,
the performance obtained by applying the Cj from test case j on itself.

To compare Fi→j and Fj→j we �rst substract from both Fi→j and Fj→j the default performance
F0→j , i.e., the performance obtained by applying the default calibration C0 to test case j. Next
we divide the resulting F ′

i→j by F ′
j→j and express this fraction in percent. If Ci generalizes well to

test case j, the result will be close to 100%, occasionally even higher. If, on the other hand, the
comparison produces a negative result, Ci should not be applied to test case j at all since even the
default calibration C0 does better.

Results for Relevance Estimation. After we have calibrated the parameters on all test cases
we compare the Shannon entropy that is measured for each parameter on each test case. Table 1
shows the results after 1000 evaluations. For each parameter the Shannon entropy measured over
all 9 test cases is compared: the minimum Shannon entropy is shown, the maximum, the mean,
and the standard deviation. There is much agreement between di�erent test cases. The Shannon
entropy is either uniformly low or height for almost all test cases. That means that if performance
is highly sensitive to parameter θ in one test case, we can be almost certain that performance is
highly sensitive to this parameter in most other test cases. And if performance is insensitive to a
parameter in one test case, it will most likely be insensitive to that parameter in most other test
cases.

This is particularly surprising in the case of the rewiring parameters. Our working assumption
was that network structures improve or at least in�uence the performance of an EA on dynamic
problems. However, not even in the case of the most dynamic test cases (s = 0.1) do we see real
sensitivity. We conclude that these parameters are simply not relevant to the EA.

Results for Generalization Performance. Table 2 compares the generalization performance of
the calibrations after 1000 evaluations.

All experiments were programmed and analyzed in Matlab. The code and additional information
are online available at http://www.cs.vu.nl/~volker/CRE

5 Conclusion

We presented a method for numerical parameter calibration and relevance estimation that is based
on robust parameter estimation. We conclude that results produced by the method on one partic-
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Table 1. Comparing the Shannon entropy per parameter at the end of the search. Results are corrected
for noise.

min. max. mean std. de-
parameter of the EA entropy entropy entropy viation

probability to innovate -3.71 -0.43 -1.68 0.94
probability of bits to �ip when innovating -5.62 0.19 2.80 1.92
probability to imitate -3.11 -1.05 -2.09 0.68
fraction of best perform. peers to imitate from -2.20 -0.06 -1.12 0.69
fraction of bits to imitate -2.91 -0.82 -2.01 0.74
average connectivity -2.78 -0.09 -1.31 0.98
probability to rewire (relocate) -0.68 0.42 -0.11 0.33
fraction of best perform. agents to connect to -0.72 0.27 -0.34 0.33
fraction of worst perform. peers to disconnect from -0.90 0.37 -0.09 0.37

Table 2. Comparing the generalization performance Fi→j with the native performance Fj→j . m is the
number of peaks. s is the rate of change of a peak. Values around 100 indicate excellent generalization
between cases. Values lower than zero indicate incompatibility.

i

m 1 10 1000 1 10 1000 1 10 1000
s 0 0 0 0.001 0.001 0.001 0.01 0.01 0.01

1 0 100 100 100 100 100 100 100 100 100
10 0 100 100 100 100 100 100 100 100 100
1000 0 101 101 100 102 100 100 100 100 104
1 0.001 100 100 100 100 100 100 100 100 100

j 10 0.001 98 88 91 92 100 97 99 98 100
1000 0.001 103 98 97 96 101 100 103 102 106
1 0.01 87 69 69 70 96 79 100 98 107
10 0.01 83 68 67 77 96 80 102 100 106
1000 0.01 70 58 61 56 85 59 94 94 100

mean 96 90 90 91 98 93 100 100 102

ular problem instance are robust against signi�cant changes to the problem hardness. This holds
for both the parameter relevance estimation as the parameter calibration.

References

1. Nannen, V., Eiben, A.E.: A Method for Parameter Calibration and Relevance Estimation in Evolu-
tionary Algorithms. Genetic and Evolutionary Computation Conference (GECCO) (2006) to appear.

2. Solomono�, R.: A formal theory of inductive inference, part 1 and part 2. Information and Control 7
(1964) 1�22, 224�254

3. Kolmogorov, A.N.: Three approaches to the quantitative de�nition of information. Problems of
Information Transmission 1 (1965) 1�7

4. Chaitin, G.J.: On the length of programs for computing �nite binary sequences. J. Assoc. Comput.
Mach. 13 (1966) 547�569

5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 3(2) (1999) 124�141

6. François, O., Lavergne, C.: Design of Evolutionary Algorithms�A Statistical Perspective. IEEE
Transactions on Evolutionary Computation 5(2) (2001) 129�148

7. Box, G.E.P., Wilson, K.G.: On the Experimental Attainment of Optimum Conditions. Journal of the
Royal Statistical Society, Series B (Methodological) 13(1) (1951) 1�45

8. Taguchi, G., Wu, Y.: Introdution to O�-Line Quality Control. Central Japan Quality Control Asso-
ciation, Nagoya, Japan (1980)



48 V. Nannen, A.E. Eiben

9. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27 (1948)
379�423, 623�656

10. Grünwald, P., Vitányi, P.: Shannon Information and Kolmogorov Complexity. arXiv:cs.IT/0410002
(2004)

11. Spears, W.M.: The Role of Mutation and Recombination. Springer, Berlin, Heidelberg, New York
(2000)

12. Erd®s, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6 (1959) 290�297
13. Watts, D.J., Strogatz, S.H.: Collective dynamics of `small-world' networks. Nature 373 (1998) 440�442
14. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286 (1999) 509�511


