Outline

1. Construction Heuristics
 - Complete Search Methods
 - Incomplete Search Methods

2. Metaheuristics
 - Random Restart
 - Rollout/Pilot Method
 - Beam Search
 - Iterated Greedy
 - GRASP
 - Adaptive Iterated Construction Search

3. Experimental Analysis
 - Definitions
 - Performance Measures
 - Sample Statistics

4. Example

1) Which variable should we assign next, and in what order should its values be tried?

- Select-Initial-Unassigned-Variable
- Select-Unassigned-Variable
 - most constrained first = fail-first heuristic
 - Minimum remaining values (MRV) heuristic (tend to reduce the branching factor and to speed up pruning)
 - least constrained last
 Eg.: max degree, farthest, earliest due date, etc.

- Order-Domain-Values
 - greedy
 - least constraining value heuristic (leaves maximum flexibility for subsequent variable assignments)
 - maximal regret
 implements a kind of look ahead
2) What are the implications of the current variable assignments for the other unassigned variables?

Propagating information through constraints:
- Implicit in Select-Unassigned-Variable
- Forward checking (coupled with Minimum Remaining Values)
- Constraint propagation in CSP
 - arc consistency: force all (directed) arcs uv to be consistent:
 \exists a value in $D(v): \forall$ values in $D(u)$, otherwise detects inconsistency
 can be applied as preprocessing or as propagation step after each assignment (Maintaining Arc Consistency)
 Applied repeatedly

3) When a path fails – that is, a state is reached in which a variable has no legal values can the search avoid repeating this failure in subsequent paths?

Backtracking-Search
- chronological backtracking, the most recent decision point is revisited
- backjumping, backtracks to the most recent variable in the conflict set (set of previously assigned variables connected to X by constraints).
A* search

- The priority assigned to a node x is determined by the function
 \[f(x) = g(x) + h(x) \]

 $g(x)$: cost of the path so far
 $h(x)$: heuristic estimate of the minimal cost to reach the goal from x.

- It is optimal if $h(x)$ is an
 - admissible heuristic: never overestimates the cost to reach the goal
 - consistent: $h(n) \leq c(n, a, n') + h(n')$

A* search

Possible choices for admissible heuristic functions

- optimal solution to an easily solvable relaxed problem
- optimal solution to an easily solvable subproblem
- learning from experience by gathering statistics on state features
- preferred heuristics functions with higher values (provided they do not overestimate)
- if several heuristics available h_1, h_2, \ldots, h_m and not clear which is the best then:
 \[h(x) = \max\{h_1(x), \ldots, h_m(x)\} \]

A* best-first search

Drawbacks

- Time complexity: In the worst case, the number of nodes expanded is exponential, but it is polynomial when the heuristic function h meets the following condition:
 \[|h(x) - h^*(x)| \leq O(\log h^*(x)) \]

 h^* is the optimal heuristic, the exact cost of getting from x to the goal.

- Memory usage: In the worst case, it must remember an exponential number of nodes.
 Several variants: including iterative deepening A* (IDA*), memory-bounded A* (MA*) and simplified memory bounded A* (SMA*) and recursive best-first search (RBFS)
Incomplete Search

Complete search is often better suited when ...
- proofs of insolubility or optimality are required;
- time constraints are not critical;
- problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...
- non linear constraints and non linear objective function;
- reasonably good solutions are required within a short time;
- problem-specific knowledge is rather limited.

Outline

1. Construction Heuristics
 - Complete Search Methods
 - Incomplete Search Methods
2. Metaheuristics
 - Random Restart
 - Rollout/Pilot Method
 - Beam Search
 - Iterated Greedy
 - GRASP
 - Adaptive Iterated Construction Search
3. Experimental Analysis
 - Definitions
 - Performance Measures
 - Sample Statistics
4. Example

Greedy algorithms

Greedy algorithms (derived from best-first)
- Strategy: always make the choice that is best at the moment
- They are not generally guaranteed to find globally optimal solutions (but sometimes they do: Minimum Spanning Tree, Single Source Shortest Path, etc.)

We will see problem specific examples

Metaheuristics

On backtracking framework (beyond best-first search)
- Random Restart
- Bounded backtrack
- Credit-based search
- Limited Discrepancy Search
- Barrier Search
- Randomization in Tree Search

Outside the exact framework (beyond greedy search)
- Random Restart
- Rollout/Pilot Method
- Beam Search
- Iterated Greedy
- GRASP
- (Adaptive Iterated Construction Search)
- (Multilevel Refinement)
Randomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree (backdoors) \(\Rightarrow\) random selections + restart strategy

Random selections
- randomization in variable ordering:
 - breaking ties at random
 - use heuristic to rank and randomly pick from small factor from the best
 - random pick among heuristics
 - random pick variable with probability depending on heuristic value
- randomization in value ordering:
 - just select random from the domain

Restart strategy
- Example: \(S_u = (1, 1, 2, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, \ldots)\)

Rollout/Pilot Method

Derived from A*

- Each candidate solution is a collection of \(m\) components \(S = (s_1, s_2, \ldots, s_m)\).
- Master process adds components sequentially to a partial solution \(S_k = (s_1, s_2, \ldots, s_k)\).
- At the \(k\)-th iteration the master process evaluates feasible components to add based on an heuristic look-ahead strategy.
- The evaluation function \(H(S_{k+1})\) is determined by sub-heuristics that complete the solution starting from \(S_k\).
- Sub-heuristics are combined in \(H(S_{k+1})\) by
 - weighted sum
 - minimal value

Beam Search

Again based on tree search:
- maintain a set \(B\) of \(bw\) (beam width) partial candidate solutions
- at each iteration extend each solution from \(B\) in \(fw\) (filter width) possible ways
- rank each \(bw \times fw\) candidate solutions and take the best \(bw\) partial solutions
- complete candidate solutions obtained by \(B\) are maintained in \(B_f\)
- Stop when no partial solution in \(B\) is to be extended

Speed-ups:
- halt whenever cost of current partial solution exceeds current upper bound
- evaluate only a fraction of possible components
Iterated Greedy

Key idea: use greedy construction
- alternation of **construction** and **deconstruction** phases
- an acceptance criterion decides whether the search continues from the new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution \(s \)
while termination criterion is not satisfied do
 \(r := s \) (randomly or heuristically) destruct part of \(s \)
 greedily reconstruct the missing part of \(s \) based on acceptance criterion,
 keep \(s \) or revert to \(s := r \)

Extension: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel
- **Constructor:** greedy algorithm on a sequence of problem elements.
- **Analyzer:** assign a penalty to problem elements that contribute to flaws in the current solution.
- **Prioritizer:** uses the penalties to modify the previous sequence of problem elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other.

Greedy Randomized “Adaptive” Search Procedure (GRASP):

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:
- Candidate solutions obtained from construction heuristics can often be substantially improved by local search.
- Local search methods often require substantially fewer steps to reach high-quality solutions when initialized using greedy constructive search rather than random picking.
- By iterating cycles of constructive + local search, further performance improvements can be achieved.
Restricted candidate lists (RCLs)

- Each step of constructive search adds a solution component selected uniformly at random from a restricted candidate list (RCL).
- RCLs are constructed in each step using a heuristic function \(h \).
 - RCLs based on cardinality restriction comprise the \(k \) best-ranked solution components. (\(k \) is a parameter of the algorithm.)
 - RCLs based on value restriction comprise all solution components \(l \) for which \(h(l) \leq h_{\text{min}} + \alpha \cdot (h_{\text{max}} - h_{\text{min}}) \), where \(h_{\text{min}} \) is minimal value of \(h \) and \(h_{\text{max}} \) is maximal value of \(h \) for any \(l \). (\(\alpha \) is a parameter of the algorithm.)
- Possible extension: reactive GRASP (e.g., dynamic adaptation of \(\alpha \) during search)

Adaptive Iterated Construction Search (AICS):
initialise weights while termination criterion is not satisfied: do generate candidate solution \(s \) using subsidiary randomized constructive search perform subsidiary local search on \(s \) adapt weights based on \(s \)

Adaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP, exploiting experience gained during the search process.

Realisation:

- Associate weights with possible decisions made during constructive search.
- Initialize all weights to some small value \(\tau_0 \) at beginning of search process.
- After every cycle (= constructive + local local search phase), update weights based on solution quality and solution components of current candidate solution.

Subsidiary constructive search:

- The solution component to be added in each step of constructive search is based on i) weights and ii) heuristic function \(h \).
- \(h \) can be standard heuristic function as, e.g., used by greedy heuristics
- It is often useful to design solution component selection in constructive search such that any solution component may be chosen (at least with some small probability) irrespective of its weight and heuristic value.
Subsidiary local search:

- As in GRASP, local search phase is typically important for achieving good performance.
- Can be based on Iterative Improvement or more advanced LS method (the latter often results in better performance).
- Tradeoff between computation time used in construction phase vs local search phase (typically optimized empirically, depends on problem domain).

Weight updating mechanism:

- Typical mechanism: increase weights of all solution components contained in candidate solution obtained from local search.
- Can also use aspects of search history; e.g., current candidate solution can be used as basis for weight update for additional intensification.

Example: A simple AICS algorithm for the TSP (1/2)

- Search space and solution set as usual (all Hamiltonian cycles in given graph G). However represented in a construction tree T.
- Associate weight τ_{ij} with each edge (i, j) in G and T.
- Use heuristic values $\eta_{ij} := 1/w_{ij}$.
- Initialize all weights to a small value τ_0 (parameter).
- Constructive search start with randomly chosen vertex and iteratively extend partial round trip ϕ by selecting vertex not contained in ϕ with probability

$$
\frac{[\tau_{ij}]^\alpha \cdot [\eta_{ij}]^\beta}{\sum_{l \in N'(i)} [\tau_{il}]^\alpha \cdot [\eta_{ij}]^\beta}
$$

Example: A simple AICS algorithm for the TSP (2/2)

- Subsidiary local search = typical iterative improvement
- Weight update according to

$$
\tau_{ij} := (1 - \rho) \cdot \tau_{ij} + \Delta(i, j, s')
$$

where $\Delta(i, j, s') := 1/f(s')$, if edge ij is contained in the cycle represented by s', and 0 otherwise.
- Criterion for weight increase is based on intuition that edges contained in short round trips should be preferably used in subsequent constructions.
- Decay mechanism (controlled by parameter ρ) helps to avoid unlimited growth of weights and lets algorithm forget past experience reflected in weights.
- (Just add a population of cand. solutions and you have an Ant Colony Optimization Algorithm!)
Outline

1. Construction Heuristics
 Complete Search Methods
 Incomplete Search Methods
2. Metaheuristics
 Random Restart
 Rollout/Pilot Method
 Beam Search
 Iterated Greedy
 GRASP
 Adaptive Iterated Construction Search
3. Experimental Analysis
 Definitions
 Performance Measures
 Sample Statistics
4. Example

Definitions

The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time (or iteration) limit decided \(a \ priori \)
The algorithm \(A^\infty \) is halted when time expires.

Deterministic case: \(A^\infty \) on \(\pi \) returns a solution of cost \(x \).
The performance of \(A^\infty \) on \(\pi \) is a scalar \(y = x \).

Randomized case: \(A^\infty \) on \(\pi \) returns a solution of cost \(X \), where \(X \) is a random variable.
The performance of \(A^\infty \) on \(\pi \) is the univariate \(Y = X \).

[This is not the only relevant scenario: to be refined later]
Generalization

For each general problem Π (e.g., TSP, GCP) we denote by C_{Π} a set (or class) of instances and by $\pi \in C_{\Pi}$ a single instance.

On a specific instance, the random variable Y that defines the performance measure of an algorithm is described by its probability distribution/density function

$$Pr(Y = y | \pi)$$

It is often more interesting to generalize the performance on a class of instances C_{Π}, that is,

$$Pr(Y = y, C_{\Pi}) = \sum_{\pi \in \Pi} Pr(Y = y | \pi) Pr(\pi)$$

Sampling

In experiments,
1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of the performance measure Y, denoted Y_1, \ldots, Y_r, which are independent and identically distributed (i.i.d.), i.e.

$$Pr(y_1, \ldots, y_r | \pi) = \prod_{j=1}^{r} Pr(y_j | \pi)$$

$$Pr(y_1, \ldots, y_r) = \sum_{\pi \in C_{\Pi}} Pr(y_1, \ldots, y_r | \pi) Pr(\pi).$$

Instance Selection

In real-life applications a simulation of $p(\pi)$ can be obtained by historical data.

In simulation studies instances may be:
- real world instances
- random variants of real world-instances
- online libraries
- randomly generated instances

They may be grouped in classes according to some features whose impact may be worth studying:
- type (for features that might impact performance)
- size (for scaling studies)
- hardness (focus on hard instances)
- application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability $p(\pi) = c$

Statistical Methods

The analysis of performance is based on finite-sized sampled data. Statistics provides the methods and the mathematical basis to
- describe, summarizing, the data (descriptive statistics)
- make inference on those data (inferential statistics)

Statistics helps to
- guarantee reproducibility
- make results reliable
 (are the observed results enough to justify the claims?)
- extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e., engineering), statistics helps to take correct design decisions with the least amount of experimentation
Objectives of the Experiments

- **Comparison:**
 - bigger/smaller, same/different,
 - Algorithm Configuration,
 - Component-Based Analysis

- **Standard statistical methods:**
 - experimental designs, test hypothesis and estimation

Measures and Transformations

On a single instance

- **Computational effort indicators**
 - number of elementary operations/algorithmic iterations (e.g., search steps, objective function evaluations, number of visited nodes in the search tree, consistency checks, etc.)
 - total CPU time consumed by the process (sum of *user* and *system* times returned by `getrusage`)

- **Solution quality indicators**
 - value returned by the cost function
 - error from optimum/reference value
 - (optimality) gap \(\frac{|UB-LB|}{UB}\)
 - ranks

On a class of instances

- **Computational effort indicators**
 - no transformation if the interest is in studying scaling
 - standardization if a fixed time limit is used
 - geometric mean (used for a set of numbers whose values are meant to be multiplied together or are exponential in nature),
 - otherwise, better to group homogeneously the instances

- **Solution quality indicators**
 - Different instances imply different scales ⇒ need for an invariant measure

 (However, many other measures can be taken both on the algorithms and on the instances [McGeoch, 1996])
Measures and Transformations

On a class of instances (cont.)

Solution quality indicators

- Distance or error from a reference value (assume minimization case):
 \[e_1(x, \pi) = \frac{x(\pi) - \bar{x}(\pi)}{\sigma(\pi)} \] standard score

- Relative error:
 \[e_2(x, \pi) = \frac{x(\pi) - x^{opt}(\pi)}{x^{opt}(\pi)} \] relative error

- Invariant [Zemel, 1981]
 \[e_3(x, \pi) = \frac{x(\pi) - x^{opt}(\pi)}{x^{worst}(\pi) - x^{opt}(\pi)} \] invariant [Zemel, 1981]

 - optimal value computed exactly or known by construction
 - surrogate value such bounds or best known values

- Rank (no need for standardization but loss of information)

Measures of central tendency

- Arithmetic Average (Sample mean)
 \[\bar{X} = \frac{\sum x_i}{n} \]

- Quantile: value above or below which lie a fractional part of the data (used in nonparametric statistics)
 - Median
 \[M = x_{(n+1)/2} \]
 - Quartile
 \[Q_1 = x_{(n+1)/4} \quad Q_3 = x_{3(n+1)/4} \]
 - q-quantile
 \[q \text{ of data lies below and } 1-q \text{ lies above} \]
 - Mode
 value of relatively great concentration of data
 (Unimodal vs Multimodal distributions)

Measure of dispersion

- Sample range
 \[R = x_{(n)} - x_{(1)} \]

- Sample variance
 \[s^2 = \frac{1}{n-1} \sum (x_i - \bar{X})^2 \]

- Standard deviation
 \[s = \sqrt{s^2} \]

- Inter-quartile range
 \[IQR = Q_3 - Q_1 \]
Boxplot and a probability density function (pdf) of a Normal $N(0,1\sigma^2)$ Population.

(source: Wikipedia)

[see also: http://informationandvisualization.de/blog/box-plot]

Outline

1. Construction Heuristics
 - Complete Search Methods
 - Incomplete Search Methods

2. Metaheuristics
 - Random Restart
 - Rollout/Pilot Method
 - Beam Search
 - Iterated Greedy
 - GRASP
 - Adaptive Iterated Construction Search

3. Experimental Analysis
 - Definitions
 - Performance Measures
 - Sample Statistics

4. Example
Stochastic Dominance

Definition: Algorithm A_1 probabilistically dominates algorithm A_2 on a problem instance, iff its CDF is always "below" that of A_2, i.e.:

$$F_1(x) \leq F_2(x), \quad \forall x \in X$$

On a class of instances

R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.

```r
> load("TS.class-G.dataR")
> G[1:5,]

  alg  inst run sol  time.last.imp tot.iter parz.iter exit.iter exit.time opt
1  TS1 G-1000-0.5-30-1.1.col 59 9 9.900619 5955 442 5955 10.02463 30
2  TS1 G-1000-0.5-30-1.1.col 64 9 9.908618 4877 49 4877 10.03263 30
3  TS1 G-1000-0.5-30-1.1.col 64 9 9.736608 3880 130 3958 10.00062 30
4  TS1 G-1000-0.5-30-1.1.col 59 9 9.900619 5955 442 5955 10.02463 30
5  TS1 G-1000-0.5-30-1.1.col 68 9 9.948622 6996 409 6996 10.07663 30
```

If we want to make an aggregate analysis we have the following choices:
- maintain the raw data,
- transform data in standard error,
- transform the data in relative error,
- transform the data in an invariant error,
- transform the data in ranks.
Maintain the raw data

```r
par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
#original data
boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")
```

Transform the data in standard error

```r
#standard error
T1 <- split(G$sol,list(G$inst))
T2 <- lapply(T1,scale,center=TRUE,scale=TRUE)
T3 <- unsplit(T2,list(G$inst))
T4 <- split(T3,list(G$inst))
T5 <- stack(T4)
boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma)))))
library(latticeExtra)
ecdfplot(~values,group=ind,data=T5,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma)))))
```

```r
G$scale <- 0
split(G$scale, G$inst) <- lapply(split(G$sol, G$inst), scale,center=TRUE,scale=TRUE)
```

Transform the data in relative error

```r
#relative error
G$err2 <- (G$sol-G$opt)/G$opt
boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative error: ",frac(x-x^(opt),x^(opt)))))
ecdfplot(G$err2,group=G$alg,main=expression(paste("Relative error: ",frac(x-x^(opt),x^(opt)))))
```

Transform the data in an invariant error

We use as surrogate of \(x^{\text{worst}} \) the median solution returned by the simplest algorithm for the graph coloring, that is, the ROS heuristic.

```r
#error 3
load("ROS.class-G.dataR")
F1 <- aggregate(F$sol,list(inst=F$inst),median)
F2 <- split(F1$x,list(F1$inst))
G$ref <- sapply(G$inst,function(x) F2[[x]])
G$err3 <- (G$sol-G$opt)/(G$ref-G$opt)
boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant error: ",frac(x-x^(opt),x^{(worst)}-x^(opt)))))
ecdfplot(G$err3,group=G$alg,main=expression(paste("Invariant error: ",frac(x-x^(opt),x^{(worst)}-x^(opt)))))
```
Transform the data in ranks

```r
> #rank
> G$rank <- G$sol
> split(G$rank, G$inst) <- lapply(split(G$sol, D$inst), rank)
> bwplot(rank~reorder(alg,rank,median),data=G,horizontal=TRUE,main="Ranks")
> ecdfplot(rank,group=alg,data=G,main="Ranks")
```