DM545 Linear and Integer Programming

Lecture 6 Sensitivity Analysis and Farkas Lemma

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Geometric Interpretation Sensitivity Analysis Farkas Lemma

1. Geometric Interpretation

2. Sensitivity Analysis

3. Farkas Lemma

Outline

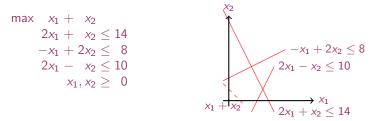
Geometric Interpretation Sensitivity Analysis Farkas Lemma

1. Geometric Interpretation

2. Sensitivity Analysis

3. Farkas Lemma

Geometric Interpretation



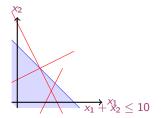
Opt $x^* = (4, 6)$, $z^* = 10$. To prove this we need to prove that $y^* = (3/5, 1/5, 0)$ is a feasible solution of *D*:

$$\begin{array}{l} \min 14y_1 + 8y_2 + 10y_3 = w \\ 2y_1 - y_2 + 2y_3 \ge 1 \\ y_1 + 2y_2 - y_3 \ge 1 \\ y_1, y_2, y_3 \ge 0 \end{array}$$

and that $w^* = 10$

$$\frac{\frac{3}{5} \cdot 2x_1 + x_2 \le 14}{\frac{1}{5} \cdot -x_1 + 2x_2 \le 8} \frac{1}{x_1 + x_2 \le 10}$$

the feasibility region of P is a subset of the half plane $x_1+x_2 \leq 10$



 $(2v - w)x_1 + (v + 2w)x_2 \le 14v + 8w$ set of half planes that contain the feasibility region of P and pass through [4,6]

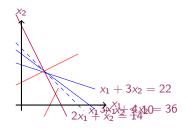
 $\frac{2v - w \ge 1}{v + 2w \ge 1}$

Example of boundary lines among those allowed:

$$v = 1, w = 0 \implies 2x_1 + x_2 = 14$$

$$v = 1, w = 1 \implies x_1 + 3x_2 = 22$$

$$v = 2, w = 1 \implies 3x_1 + 4x_2 = 36$$



Geometric Interpretation Sensitivity Analysis Farkas Lemma

1. Geometric Interpretation

2. Sensitivity Analysis

3. Farkas Lemma

Sensitivity Analysis aka Postoptimality Analysis

Geometric Interpretation

Sensitivity Analysis

Instead of solving each modified problems from scratch, exploit results obtained from solving the original problem.

$$\max\{c^T x \mid Ax = b, l \le x \le u\}$$
(*)

(I) changes to coefficients of objective function: $\max\{\tilde{c}^T x \mid Ax = b, l \le x \le u\}$ (primal) x^* of (*) remains feasible hence we can restart the simplex from x^*

(II) changes to RHS terms: max{c^Tx | Ax = b, l ≤ x ≤ u} (dual) x* optimal feasible solution of (*) basic sol x̄ of (II): x̄_N = x^{*}_N, A_Bx̄_B = b̃ - A_Nx̄_N x̄ is dual feasible and we can start the dual simplex from there. If b̃ differs from b only slightly it may be we are already optimal.

(primal)

(dual)

(III) introduce a new variable:

$$\max \sum_{j=1}^{6} c_j x_j$$

$$\sum_{j=1}^{6} a_{ij} x_j = b_i, \ i = 1, \dots, 3$$

$$l_j \le x_j \le u_j, \ j = 1, \dots, 6$$

$$[x_1^*, \dots, x_6^*] \text{ feasible}$$

$$\begin{array}{ll} \max & \sum_{j=1}^{7} c_{j} x_{j} \\ & \sum_{j=1}^{7} a_{ij} x_{j} = b_{i}, \ i = 1, \dots, 3 \\ & l_{j} \leq x_{j} \leq u_{j}, \ j = 1, \dots, 7 \\ & [x_{1}^{*}, \dots, x_{6}^{*}, 0] \ \text{feasible} \end{array}$$

(IV) introduce a new constraint:

$$\sum_{j=1}^{6} a_{4j} x_j = b_4$$
$$\sum_{j=1}^{6} a_{5j} x_j = b_5$$
$$l_j \le x_j \le u_j \qquad j = 7, 8$$

$$[x_{1}^{*}, \dots, x_{6}^{*}] \text{ optimal}$$

$$x_{1}^{*}, \dots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}] \text{ feasible}$$

$$x_{7}^{*} = b_{4} - \sum_{j=1}^{6} a_{4j} x_{j}^{*}$$

$$x_{8}^{*} = b_{5} - \sum_{j=1}^{6} a_{5j} x_{j}^{*}$$

[

Examples

(I) Variation of reduced costs:

 $\begin{array}{rrrr} \max 6x_1 + 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + 4x_2 \leq 40 \\ x_1, x_2 \geq 0 \end{array}$

The last tableau gives the possibility to estimate the effect of variations

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

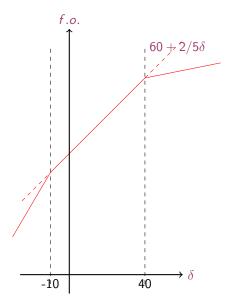
$$\max(6+\delta)x_1 + 8x_2 \implies \bar{c}_1 = -\frac{2}{5}\cdot 5 - 1\cdot 4 + 1(6+\delta) = \delta$$

then need to bring in canonical form and hence δ changes the obj value. For a variable not in basis, if it changes the sign of the reduced cost \implies worth bringing in basis \implies the δ term propagates to other columns

(II) Changes in RHS terms

(It would be more convenient to augment the second. But let's take $\epsilon = 0$.) If $60 + \delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_1 = \frac{1}{5}, k_2 = -\frac{1}{4}, k_3 = 0$ I: $1/5(60 + \delta) - 1/4 \cdot 40 + 0 \cdot 0 = 12 + \delta/5 - 10 = 2 + \delta/5$ II: $-1/5(60 + \delta) + 1/2 \cdot 40 + 0 \cdot 0 = -60/5 + 20 - \delta/5 = 8 - 1/5\delta$ Risk that RHS becomes negative Eg: if $\delta = -20 \Longrightarrow$ tableau stays optimal but not feasible \Longrightarrow apply dual simplex

Graphical Representation



(III) Add a variable

$$\begin{array}{l} \max 5x_0 + 6x_1 + 8x_2 \\ 6x_0 + 5x_1 + 10x_2 \leq 60 \\ 8x_0 + 4x_1 + 4x_2 \leq 40 \\ x_0, x_1, x_2 \geq 0 \end{array}$$

Reduced cost of x_0 ? $c_j + \sum \pi_i a_{ij} = +1 \cdot 5 - \frac{2}{5} \cdot 6 + (-1)8 = -\frac{27}{5}$

To make worth entering in basis:

- increase its cost
- decrease the amount in constraint II: $-2/5 \cdot 6 a_{20} + 5 > 0$

(IV) Add a constraint

 $\begin{array}{rrrr} \max 6x_1 + 8x_2 \\ 5x_1 + 10x_2 \leq 60 \\ 4x_1 + 4x_2 \leq 40 \\ 5x_1 + 6x_2 \leq 50 \\ x_1, x_2 \geq 0 \end{array}$

Final tableau not in canonical form, need to iterate

(V) change in a technological coefficient:

- first effect on its column
- ▶ then look at c
- ► finally look at *b*

The dominant application of LP is mixed integer linear programming. In this context it is extremely important being able to begin with a model instantiated in one form followed by a sequence of problem modifications (such as row and column additions and deletions and variable fixings) interspersed with resolves

Outline

Geometric Interpretation Sensitivity Analysis Farkas Lemma

1. Geometric Interpretation

2. Sensitivity Analysis

3. Farkas Lemma

Strong Duality

Summary of Proof seen earlier in matrix notation:

Assuming that P and D have feasible solutions: there exists an optimal basis B and an optimal solution \mathbf{x}_B Dual solution corresponding to B, $\mathbf{y}_B = \mathbf{c}_B^T \mathbf{A}_B^{-1}$, aka multipliers for B From the simplex:

 $\bar{\mathbf{c}} = \mathbf{c} + \pi \mathbf{A}$

and at optimality $c_{\it B}=0$ for basic variables and $c_{\it \bar{B}}\geq 0$ for non basic variables

Setting $\mathbf{y}_B = -\pi$ we obtain $\mathbf{y}_B \mathbf{A} \leq \mathbf{c}$ and hence \mathbf{y}_B is feasible for the dual. What is the value of this dual solution?

 $\mathbf{y}_B^T \mathbf{b} = \mathbf{c}_B^T \mathbf{A}_B^{-1} \mathbf{b} = \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}^T \mathbf{x}$

We now look at Farkas Lemma with two objectives:

- giving another proof of strong duality
- understanding a certificate of infeasibility

Lemma (Farkas) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, either 1. $\exists x \in \mathbb{R}^n : Ax = b \text{ and } x \ge 0$ or 11. $\exists y \in \mathbb{R}^m : y^T A \ge 0^T$ and $y^T b < 0$

Easy to see that both I and II cannot occur together:

$$(0 \le) \quad \underbrace{(y^T A)}_{\ge 0} \underbrace{x}_{\ge 0} y^T A x = y^T b \quad (< 0)$$

Geometric interpretation of Farkas L.

Geometric Interpretation Sensitivity Analysis Farkas Lemma

Linear combination of a_i with nonnegative terms generates a convex cone:

 $\{\lambda_1 a_1 + \ldots + \lambda_n a_n, | \lambda_1, \ldots, \lambda_n \ge 0\}$

polyhedral cone: $C = \{x \mid Ax \le 0\}$, intersection of many $ax \le 0$ Convex hull of rays $p_i = \{\lambda_i a_i, \lambda_i \ge 0\}$

Either point b lies in convex cone C or \exists hyperplane h passing through point $0 \ h = \{x \in \mathbb{R}^m : y^T x = 0\}$ for $y \in \mathbb{R}^m$ such that all vectors a_1, \ldots, a_n (and thus C) lie on one side and b lies (strictly) on the other side (ie, $y^T a_i \ge 0, \forall i = 1 \ldots n$ and $y^T b < 0$).

Variants of Farkas Lemma

Corollary

(i)
$$Ax = b$$
 has sol $x \ge 0 \iff \forall y \in \mathbb{R}^m$ with $y^T A \ge 0^T$, $y^T b \ge 0$

- (ii) $Ax \le b$ has sol $x \ge 0 \iff \forall y \ge 0$ with $y' A \ge 0'$, $y' b \ge 0$
- (iii) $Ax \leq 0$ has sol $x \in \mathbb{R}^n \iff \forall y \geq 0$ with $y^T A = 0^T, y^T b \geq 0$

 $\begin{array}{l} \textbf{i)} \implies \textbf{ii):} \\ \bar{\textbf{A}} = [\textbf{A} \mid \textit{I}_m] \\ \textbf{Ax} \leq \textbf{b} \text{ has sol } \textbf{x} \geq \textbf{0} \iff \bar{\textbf{A}}\textbf{x} = \textbf{b} \text{ has sol } \textbf{x} \geq \textbf{0} \\ \text{By (i):} \end{array}$

$\forall \mathbf{y} \in \mathbb{R}^m$	
$\mathbf{y}^T \mathbf{b} \ge 0, \mathbf{y}^T \mathbf{\bar{A}} \ge 0$	

relation with Fourier & Moutzkin method

	The system	The system
	$A\mathbf{x} \leq \mathbf{b}$	$A\mathbf{x} = \mathbf{b}$
has a solution	$\mathbf{y} \ge 0, \mathbf{y}^T A \ge 0$	$\mathbf{y}^T A \ge 0^T$
$\mathbf{x} \ge 0$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$
has a solution	$\mathbf{y} \ge 0, \mathbf{y}^T A = 0$	$\mathbf{y}^T A = 0^T$
$\mathbf{x} \in \mathbb{R}^n$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} = 0$

 $\mathbf{y}^T \mathbf{A} > \mathbf{0}$

y > **0**

Strong Duality by Farkas Lemma

Assume P has opt \mathbf{x}^* and find D has opt as well. Opt value for P:

 $\gamma = \mathbf{c}^T \mathbf{x}^*$

We know by assumption:

$$\begin{array}{l} \mathbf{A}\mathbf{x} \leq \mathbf{b} \\ \mathbf{c}^{\mathcal{T}}\mathbf{x} \geq \gamma \end{array} \text{ has sol } \mathbf{x} \geq \mathbf{0} \end{array}$$

Let's define:

$$\hat{\mathbf{A}} = \begin{bmatrix} \mathbf{A} \\ -\mathbf{c}^T \end{bmatrix}$$
 $\hat{\mathbf{b}} = \begin{bmatrix} \mathbf{b} \\ -\gamma - \epsilon \end{bmatrix}$

and consider $\hat{A}x \leq \hat{b}_0$ and $\hat{A}x \leq \hat{b}_{\epsilon}$

Geometric Interpretation Sensitivity Analysis Farkas Lemma

and
$$\forall \epsilon > 0$$

 $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
 $\mathbf{c}^{\mathsf{T}}\mathbf{x} \geq \gamma + \epsilon$ has no sol $x \geq \mathbf{0}$

we apply variant (ii) of Farkas' Lemma:

For $\epsilon \geq 0$, $\hat{A}x \leq \hat{b}_{\epsilon}$ has no sol $x \geq 0$ isFor $\epsilon = 0$, $\hat{A}x \leq \hat{b}_0$ has sol $x \geq 0$ is equivalent to: equivalent to: there exists $\hat{\mathbf{y}} = (\mathbf{u}, z) \in \mathbb{R}^{m+1}$, there exists $\hat{\mathbf{y}} = (\mathbf{u}, z) \in \mathbb{R}^{m+1}$,

$$\begin{split} \hat{\mathbf{y}} &\geq \mathbf{0} & \hat{\mathbf{y}} \geq \mathbf{0} \\ \hat{\mathbf{y}}^{\mathsf{T}} \hat{\mathbf{A}} &\geq \mathbf{0} & \hat{\mathbf{y}}^{\mathsf{T}} \hat{\mathbf{A}} \geq \mathbf{0} \\ \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{b}_{\epsilon} &< \mathbf{0} & \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{b}_{0} \geq \mathbf{0} \end{split}$$

Then

Then

0

Hence, z > 0 or z = 0 would contradict the separation of cases.

We can set $\mathbf{v} = 1/z\mathbf{u} \ge 0$

 $\mathbf{A}^T \mathbf{v} > \mathbf{c}$ $\mathbf{b}^T \mathbf{v} < \gamma + \epsilon$

v is feasible sol of D with objective value $< \gamma + \epsilon$

By weak duality γ is upper bound. Since D bounded and feasible then there exists y*:

$$\gamma \leq \mathbf{b}^{\mathsf{T}} \mathbf{y}^* < \gamma + \epsilon \qquad \forall \epsilon > \mathbf{0}$$

which implies $\mathbf{b}^T \mathbf{y}^* = \gamma$

Certificate of Infeasibility

Farkas Lemma provides a way to certificate infeasibility. Given a certificate y^* it is easy to check the conditions (by linear algebra):

 $\begin{array}{l} A^T y^* \geq 0 \\ b y^* < 0 \end{array}$

Why y^* would be a certificate of infeasibility? Proof: (by contradiction) Assume, $A^T y^* \ge 0$ and $by^* < 0$. Moreover assume $\exists x^*: Ax^* = b, x^* \ge 0$,then:

$$(\geq 0)$$
 $(y^*)^T A x^* = (y^*)^T b$ (< 0)

Contradiction

General form:

$$\begin{array}{ll} \max c^{T} x & \text{infeasible} \Leftrightarrow \exists y^{*} \\ A_{1}x = b_{1} & & \\ A_{2}x \leq b_{2} & & b_{1}^{T}y_{1} + b_{2}^{T}y_{2} + b_{3}^{T}y_{3} > 0 \\ A_{3}x \geq b_{3} & & A_{1}^{T}y_{1} + A_{2}^{T}y_{2} + A_{3}^{T}y_{3} \leq 0 \\ & x \geq 0 & & y_{2} \leq 0 \\ & & y_{3} \geq 0 \end{array}$$

Example:

 $y_1 = -1, y_2 = 1$ is a valid certificate.

- Observe that it is not unique!
- ▶ It can be reported in place of the dual solution because same dimension.
- ► To repair infeasibility we should change the primal at least so much as that the certificate of infeasibility is no longer valid.
- ► Only constraints with y_i ≠ 0 in the certificate of infeasibility cause infeasibility

Duality: Summary

Geometric Interpretation Sensitivity Analysis Farkas Lemma

- Derivation:
 - 1. bounding
 - 2. multipliers
 - 3. recipe
 - 4. Lagrangian (to do)
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
 - Farkas Lemma:
 - Strong duality + Infeasibility certificate
- Dual Simplex
- Economic interpretation
- Geometric Interpretation
- Sensitivity analysis

Resume

Advantages of considering the dual formulation:

- proving optimality (although the simplex tableau can already do that)
- gives a way to check the correctness of results easily
- alternative solution method (ie, primal simplex on dual)
- sensitivity analysis
- solving P or D we solve the other for free
- certificate of infeasibility