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max x1 + x2
2x1 + x2 ≤ 14
−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1, x2 ≥ 0

x1 + x2 2x1 + x2 ≤ 14

−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1

x2

Opt x∗ = (4, 6), z∗ = 10. To prove this we need to prove that
y∗ = (3/5, 1/5, 0) is a feasible solution of D:

min 14y1 + 8y2 + 10y3 = w
2y1 − y2 + 2y3 ≥ 1
y1 + 2y2 − y3 ≥ 1

y1, y2, y3 ≥ 0

and that w∗ = 10

4



Geometric Interpretation
Sensitivity Analysis
Farkas Lemma

3
5 · 2x1 + x2 ≤ 14
1
5 · −x1 + 2x2 ≤ 8

x1 + x2 ≤ 10

the feasibility region of P is a subset of
the half plane x1 + x2 ≤ 10

x1 + x2 ≤ 10x1

x2

(2v − w)x1 + (v + 2w)x2 ≤ 14v + 8w set of half planes that contain the
feasibility region of P and pass through [4, 6]

2v − w ≥ 1
v + 2w ≥ 1

Example of boundary lines among
those allowed:

v = 1,w = 0 =⇒ 2x1 + x2 = 14

v = 1,w = 1 =⇒ x1 + 3x2 = 22

v = 2,w = 1 =⇒ 3x1 + 4x2 = 36 x1 + x2 ≤ 10

x1 + 3x2 = 22

2x1 + x2 = 143x1 + 4x2 = 36x1

x2
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aka Postoptimality Analysis

Instead of solving each modified problems from scratch, exploit results
obtained from solving the original problem.

max{cT x | Ax = b, l ≤ x ≤ u} (*)

(I) changes to coefficients of objective function:
max{c̃T x | Ax = b, l ≤ x ≤ u} (primal)
x∗ of (*) remains feasible hence we can restart the simplex from x∗

(II) changes to RHS terms: max{cT x | Ax = b̃, l ≤ x ≤ u} (dual)
x∗ optimal feasible solution of (*)
basic sol x̄ of (II): x̄N = x∗

N , AB x̄B = b̃ − AN x̄N

x̄ is dual feasible and we can start the dual simplex from there. If b̃
differs from b only slightly it may be we are already optimal.
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(III) introduce a new variable: (primal)

max
6∑

j=1

cjxj

6∑
j=1

aijxj = bi , i = 1, . . . , 3

lj ≤ xj ≤ uj , j = 1, . . . , 6

[x∗
1 , . . . , x

∗
6 ] feasible

max
7∑

j=1

cjxj

7∑
j=1

aijxj = bi , i = 1, . . . , 3

lj ≤ xj ≤ uj , j = 1, . . . , 7

[x∗
1 , . . . , x

∗
6 , 0] feasible

(IV) introduce a new constraint: (dual)
6∑

j=1

a4jxj = b4

6∑
j=1

a5jxj = b5

lj ≤ xj ≤ uj j = 7, 8

[x∗
1 , . . . , x

∗
6 ] optimal

[x∗
1 , . . . , x

∗
6 , x

∗
7 , x

∗
8 ] feasible

x∗
7 = b4 −

6∑
j=1

a4jx∗
j

x∗
8 = b5 −

6∑
j=1

a5jx∗
j
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(I) Variation of reduced costs:

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

The last tableau gives the possibility
to estimate the effect of variations

x1 x2 x3 x4 −z b
x3 5 10 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

x1 x2 x3 x4 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 −2/5 −1 1 −64

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

max(6 + δ)x1 + 8x2 =⇒ c̄1 = −2
5
· 5− 1 · 4 + 1(6 + δ) = δ

then need to bring in canonical form and hence δ changes the obj value. For
a variable not in basis, if it changes the sign of the reduced cost =⇒ worth
bringing in basis =⇒the δ term propagates to other columns
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(II) Changes in RHS terms

x1 x2 x3 x4 −z b
x3 5 10 1 0 0 60+ δ
x4 4 4 0 1 0 40+ ε

6 8 0 0 1 0

x1 x2 x3 x4 −z b
x2 0 1 1/5 − 1/4 0 2+ 1/5δ − 1/4ε
x1 1 0 −1/5 1/2 0 8− 1/5δ + 1/2ε

0 0 −2/5 −1 1 −64− 2/5δ − ε

(It would be more convenient to augment the second. But let’s take ε = 0.)
If 60 + δ =⇒all RHS terms change and we must check feasibility
Which are the multipliers for the first row?k1 = 1

5 , k2 = − 1
4 , k3 = 0

I: 1/5(60 + δ)− 1/4 · 40 + 0 · 0 = 12 + δ/5− 10 = 2 + δ/5
II: −1/5(60 + δ) + 1/2 · 40 + 0 · 0 = −60/5 + 20− δ/5 = 8− 1/5δ
Risk that RHS becomes negative
Eg: if δ = −20 =⇒tableau stays optimal but not feasible =⇒apply dual
simplex
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60 + 2/5δ

40-10
δ

f .o.
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(III) Add a variable

max 5x0 + 6x1 + 8x2
6x0 + 5x1 + 10x2 ≤ 60
8x0 + 4x1 + 4x2 ≤ 40

x0, x1, x2 ≥ 0

Reduced cost of x0? cj +
∑
πiaij = +1 · 5− 2

5 · 6 + (−1)8 = − 27
5

To make worth entering in basis:
I increase its cost
I decrease the amount in constraint II: −2/5 · 6− a20 + 5 > 0
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(IV) Add a constraint

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40
5x1 + 6x2 ≤ 50

x1, x2 ≥ 0

Final tableau not in canonical form, need to iterate

x1 x2 x3 x4 x5 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 5/5 6/4 1 0 −2
0 0 −2/5 −1 0 1 −64
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(V) change in a technological coefficient:

x1 x2 x3 x4 −z b
x3 5 10+ δ 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

I first effect on its column
I then look at c
I finally look at b

x1 x2 x3 x4 −z b
x2 0 (10+ δ)1/5+ 4(−1/4) 1/5 −1/4 0 2
x1 1 (10+ δ)(−1/5) + 4(1/2) −1/5 1/2 0 8

0 −2/5δ −2/5 −1 1 −64
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The dominant application of LP is mixed integer linear programming. In this
context it is extremely important being able to begin with a model
instantiated in one form followed by a sequence of problem modifications
(such as row and column additions and deletions and variable fixings)
interspersed with resolves
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Summary of Proof seen earlier in matrix notation:

Assuming that P and D have feasible solutions:
there exists an optimal basis B and an optimal solution xB
Dual solution corresponding to B, yB = cT

B AB
−1, aka multipliers for B

From the simplex:

c̄ = c + πA

and at optimality cB = 0 for basic variables and cB̄ ≥ 0 for non basic
variables
Setting yB = −π we obtain yBA ≤ c and hence yB is feasible for the dual.
What is the value of this dual solution?

yT
B b = cT

B A−1
B b = cT

B xB = cTx
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We now look at Farkas Lemma with two objectives:

I giving another proof of strong duality

I understanding a certificate of infeasibility
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Lemma (Farkas)

Let A ∈ Rm×n and b ∈ Rm. Then,

either I . ∃x ∈ Rn :Ax = b and x ≥ 0

or II . ∃y ∈ Rm :yTA ≥ 0T and yTb < 0

Easy to see that both I and II cannot occur together:

(0 ≤) (yTA)︸ ︷︷ ︸
≥0

x︸︷︷︸
≥0

yTAx = yTb (< 0)
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Linear combination of ai with nonnegative terms generates a convex cone:

{λ1a1 + . . .+ λnan, | λ1, . . . , λn ≥ 0}
polyhedral cone: C = {x | Ax ≤ 0}, intersection of many ax ≤ 0
Convex hull of rays pi = {λiai , λi ≥ 0}

Either point b lies in convex cone C
or ∃ hyperplane h passing through point 0 h = {x ∈ Rm : yT x = 0}

for y ∈ Rm such that all vectors a1, . . . , an (and thus C ) lie on one
side and b lies (strictly) on the other side (ie, yTai ≥ 0,∀i = 1 . . . n
and yTb < 0).
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Corollary

(i) Ax = b has sol x ≥ 0 ⇐⇒ ∀y ∈ Rm with yTA ≥ 0T , yTb ≥ 0
(ii) Ax ≤ b has sol x ≥ 0 ⇐⇒ ∀y ≥ 0 with yTA ≥ 0T , yTb ≥ 0
(iii) Ax ≤ 0 has sol x ∈ Rn ⇐⇒ ∀y ≥ 0 with yTA = 0T , yTb ≥ 0

i) =⇒ ii):
Ā = [A | Im]
Ax ≤ b has sol x ≥ 0 ⇐⇒ Āx = b has sol x ≥ 0
By (i):

∀y ∈ Rm

yTb ≥ 0, yT Ā ≥ 0
yTA ≥ 0
y ≥ 0

relation with Fourier &
Moutzkin method
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Assume P has opt x∗ and find D has opt as well.
Opt value for P:

γ = cTx∗

We know by assumption:

Ax ≤ b
cTx ≥ γ has sol x ≥ 0

and ∀ε > 0
Ax ≤ b
cTx ≥ γ + ε

has no sol x ≥ 0

Let’s define:

Â =

[
A
−cT

]
b̂ =

[
b

−γ − ε

]

and consider Âx ≤ b̂0 and Âx ≤ b̂ε

24



we apply variant (ii) of Farkas’ Lemma:

For ε ≥ 0, Âx ≤ b̂ε has no sol x ≥ 0 is
equivalent to:
there exists ŷ = (u, z) ∈ Rm+1,

ŷ ≥ 0
ŷT Â ≥ 0
ŷTbε < 0

Then

ATu ≥ 0
bTu < z(γ + ε)

For ε = 0, Âx ≤ b̂0 has sol x ≥ 0 is
equivalent to:
there exists ŷ = (u, z) ∈ Rm+1,

ŷ ≥ 0
ŷT Â ≥ 0
ŷTb0 ≥ 0

Then

ATu ≥ 0
bTu ≥ zγ

Hence, z > 0 or z = 0 would contradict the separation of cases.
We can set v = 1/zu ≥ 0

ATv ≥ c
bTv < γ + ε

v is feasible sol of D with objective
value < γ + ε

By weak duality γ is upper bound.
Since D bounded and feasible then
there exists y∗:

γ ≤ bTy∗ < γ + ε ∀ε > 0

which implies bTy∗ = γ
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Farkas Lemma provides a way to certificate infeasibility.
Given a certificate y∗ it is easy to check the conditions (by linear algebra):

AT y∗ ≥ 0
by∗ < 0

Why y∗ would be a certificate of infeasibility?
Proof: (by contradiction)
Assume, AT y∗ ≥ 0 and by∗ < 0.
Moreover assume ∃x∗: Ax∗ = b, x∗ ≥ 0,then:

(≥ 0) (y∗)TAx∗ = (y∗)Tb (< 0)

Contradiction
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General form:

max cT x
A1x = b1
A2x ≤ b2
A3x ≥ b3

x ≥ 0

infeasible ⇔ ∃y∗

bT
1 y1 + bT

2 y2 + bT
3 y3 > 0

AT
1 y1 + AT

2 y2 + AT
3 y3 ≤ 0

y2 ≤ 0
y3 ≥ 0

Example:

max cT x
x1 ≤ 1
x1 ≥ 2

bT
1 y1 + bT

2 y2 > 0
AT

1 y1 + AT
2 y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 + 2y2 > 0
y1 + y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 = −1, y2 = 1 is a valid certificate.
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I Observe that it is not unique!
I It can be reported in place of the dual solution because same dimension.
I To repair infeasibility we should change the primal at least so much as

that the certificate of infeasibility is no longer valid.
I Only constraints with yi 6= 0 in the certificate of infeasibility cause

infeasibility
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I Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian (to do)

I Theory:
I Symmetry
I Weak duality theorem
I Strong duality theorem
I Complementary slackness theorem
I Farkas Lemma:

Strong duality + Infeasibility certificate

I Dual Simplex
I Economic interpretation
I Geometric Interpretation
I Sensitivity analysis
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Advantages of considering the dual formulation:

I proving optimality (although the simplex tableau can already do that)

I gives a way to check the correctness of results easily

I alternative solution method (ie, primal simplex on dual)

I sensitivity analysis

I solving P or D we solve the other for free

I certificate of infeasibility
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