DM841
Discrete Optimization

Lecture 3
Local Search and Metaheuristics
Overview

Marco Chiarandini
Department of Mathematics & Computer Science
University of Southern Denmark
Last Time

1. Combinatorial Optimization and Terminology

2. Solution Methods

3. SAT Example: enumeration, MIP, local search, backtracking
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
Knapsack problem

Given: a set of items \(I \), each item \(i \in I \) characterized by
- its weight \(w_i \)
- its value \(v_i \)
- and a capacity \(K \) for a knapsack

Task: find the subset of items in \(I \)
- does not exceed the capacity \(K \) of the knapsack
- that has maximum value
Let x_i be a binary variable that denotes whether we include or not the item i.

\[
\begin{align*}
\text{max} & \quad \sum_{i \in I} v_i x_i \\
\text{s.t.} & \quad \sum_{i \in I} w_i x_i \leq K \\
& \quad x_i \in \{0, 1\}, \quad \forall i \in I
\end{align*}
\]

\[
\forall c \in C,
\]
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
Enumeration

- $x_1 = 1$
- $x_1 = 0$
- $x_2 = 1$
- $x_2 = 0$
- $x_3 = 1$
- $x_3 = 0$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Branch and Bound

- Iterative two steps
 - branching
 - bounding

- Branching
 - split the problem into a number of subproblems
 - like in exhaustive search

- Bounding
 - find an optimistic estimate of the best solution to the subproblem
 maximization: upper bound
 minimization: lower bound
Branch and Bound

Optimistic estimate: Relaxing capacity constraint

<table>
<thead>
<tr>
<th>i</th>
<th>V_i</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>3</td>
</tr>
</tbody>
</table>

$K = 10$

$X_1 = 1$

$X_2 = 1$

$X_3 = 1$

$X_1 = 0$

$X_2 = 0$

$X_3 = 0$

$X_3 = 1$

$X_3 = 0$

Value Room Estimate

0

10

83

0

10

35

128

128

128

80

45

5

80

48

2

2

45

5

48

2

35

80

45

-1

48

2
Branch and Bound

Optimistic estimation: Relaxing integrality

<table>
<thead>
<tr>
<th>i</th>
<th>(V_i)</th>
<th>(W_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>3</td>
</tr>
</tbody>
</table>

\(K = 10 \)

\[
\begin{array}{c|c|c}
\hline
x_1 & 0 & 10 \quad 92 \\
\hline
x_2 & 0 & 10 \quad 77 \\
\hline
\end{array}
\]
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
Dynamic Programming

Notation:
- assume that $l = 1, 2, ..., n$
- $O(k, j)$ denotes the optimal solution to the knapsack problem with capacity k and items $[1..j]$

We are interested in finding out the best value $O(K, n)$
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \] for all \(k \in 0..K \)
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).
- If \(w_j \leq k \), there are two cases
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).
- If \(w_j \leq k \), there are two cases
 - Either we do not select item \(j \), then the best solution we can obtain is \(O(k, j - 1) \)
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).
- If \(w_j \leq k \), there are two cases
 - Either we do not select item \(j \), then the best solution we can obtain is \(O(k, j - 1) \)
 - Or we select item \(j \) and the best solution is \(v_j + O(k - w_j, j - 1) \)
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).
- If \(w_j \leq k \), there are two cases
 - Either we do not select item \(j \), then the best solution we can obtain is \(O(k, j - 1) \)
 - Or we select item \(j \) and the best solution is \(v_j + O(k - w_j, j - 1) \)
- In summary

\[
O(k, j) = \begin{cases}
\max\{O(k, j - 1), v_j + O(k - w_j, j - 1)\} & \text{if } w_j \leq k \\
O(k, j - 1) & \text{otherwise}
\end{cases}
\]
Recurrence relation

- Assume that we know how to solve

\[O(k, j - 1) \text{ for all } k \in 0..K \]

- We want to solve \(O(k, j) \): We are just considering one more item, i.e., item \(j \).

- If \(w_j \leq k \), there are two cases
 - Either we do not select item \(j \), then the best solution we can obtain is \(O(k, j - 1) \)
 - Or we select item \(j \) and the best solution is \(v_j + O(k - w_j, j - 1) \)

- In summary

\[
O(k, j) = \begin{cases}
\max\{O(k, j - 1), v_j + O(k - w_j, j - 1)\} & \text{if } w_j \leq k \\
O(k, j - 1) & \text{otherwise}
\end{cases}
\]

- Initial conditions:

\[O(k, 0) = 0 \text{ for all } k \]
Compute the recurrence relation bottom up

```c
int O(int k, int j) {
    if (j == 0)
        return 0;
    else if (wj <= k)
        return max(O(k, j - 1), vj + O(k - wj, j - 1));
    else
        return O(k, j - 1)
}
```

How efficient is this approach?
1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
The Vertex Coloring Problem

Given: A graph G and a set of colors Γ.

A **proper coloring** is an assignment of one color to each vertex of the graph such that adjacent vertices receive different colors.
The Vertex Coloring Problem

Given: A graph \(G \) and a set of colors \(\Gamma \).

A **proper coloring** is an assignment of one color to each vertex of the graph such that adjacent vertices receive different colors.
The Vertex Coloring Problem

Given: A graph G and a set of colors Γ.

A **proper coloring** is an assignment of one color to each vertex of the graph such that adjacent vertices receive different colors.

Decision version (k-coloring)

Task: Find a proper coloring of G that uses at most k colors.

Optimization version (chromatic number)

Task: Find a proper coloring of G that uses the minimal number of colors.
The Vertex Coloring Problem

Given: A graph G and a set of colors Γ.

A *proper coloring* is an assignment of one color to each vertex of the graph such that adjacent vertices receive different colors.

Decision version (k-coloring)

Task: Find a proper coloring of G that uses at most k colors.

Optimization version (chromatic number)

Task: Find a proper coloring of G that uses the minimal number of colors.

Design an *algorithm* for solving general instances of the graph coloring problem.
Exercise

Map coloring:
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
The **domain** of a variable x, denoted $D(x)$, is a finite set of elements that can be assigned to x.
The **domain** of a variable x, denoted $D(x)$, is a finite set of elements that can be assigned to x.

A **constraint** C on X is a subset of the Cartesian product of the domains of the variables in X, i.e., $C \subseteq D(x_1) \times \cdots \times D(x_k)$ (extensional form). A tuple $(d_1, \ldots, d_k) \in C$ is called a **solution** to C.
The **domain** of a variable x, denoted $D(x)$, is a finite set of elements that can be assigned to x.

A **constraint** C on X is a subset of the Cartesian product of the domains of the variables in X, i.e., $C \subseteq D(x_1) \times \cdots \times D(x_k)$ (extensional form). A tuple $(d_1, \ldots, d_k) \in C$ is called a solution to C.

Equivalently, we say that a solution $(d_1, \ldots, d_k) \in C$ is an assignment of the value d_i to the variable x_i, $\forall 1 \leq i \leq k$, and that this assignment satisfies C (intentional form).
The domain of a variable x, denoted $D(x)$, is a finite set of elements that can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of the variables in X, i.e., $C \subseteq D(x_1) \times \cdots \times D(x_k)$ (extensional form). A tuple $(d_1, \ldots, d_k) \in C$ is called a solution to C.

Equivalently, we say that a solution $(d_1, \ldots, d_k) \in C$ is an assignment of the value d_i to the variable x_i, $\forall 1 \leq i \leq k$, and that this assignment satisfies C (intentional form). If $C = \emptyset$, we say that it is inconsistent.
Constraint Programming

Constraint Satisfaction Problem (CSP)
A CSP is a finite set of variables X, together with a finite set of constraints C, each on a subset of X. A solution to a CSP is an assignment of a value $d \in D(x)$ to each $x \in X$, such that all constraints are satisfied simultaneously.
Constraint Programming

Constraint Satisfaction Problem (CSP)
A CSP is a finite set of variables X, together with a finite set of constraints C, each on a subset of X. A solution to a CSP is an assignment of a value $d \in D(x)$ to each $x \in X$, such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)
A COP is a CSP P defined on the variables x_1, \ldots, x_n, together with an objective function $f : D(x_1) \times \cdots \times D(x_n) \to Q$ that assigns a value to each assignment of values to the variables. An optimal solution to a minimization (maximization) COP is a solution d to P that minimizes (maximizes) the value of $f(d)$.
CP formulation:

variables: \(\text{domain}(y_i) = \{1, \ldots, K\} \quad \forall i \in V \)

constraints: \(y_i \neq y_j \quad \forall ij \in E(G) \)

\(\text{alldifferent}\left(\{y_i \mid i \in C\}\right) \quad \forall C \in C \)
Propagation: An Example

Figure 5.6 The progress of a map-coloring search with forward checking. \(WA = \text{red} \) is assigned first; then forward checking deletes \(\text{red} \) from the domains of the neighboring variables \(NT \) and \(SA \). After \(Q = \text{green} \), \(\text{green} \) is deleted from the domains of \(NT \), \(SA \), and \(NSW \). After \(V = \text{blue} \), \(\text{blue} \) is deleted from the domains of \(NSW \) and \(SA \), leaving \(SA \) with no legal values.
Search

- Backtracking (complete)
- Branch and Bound (complete)
- Local search (incomplete)
Outline

1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
1. Solution Methods & Examples
 - Knapsack
 - Enumeration, Branch & Bound
 - Dynamic Programming
 - Vertex Coloring
 - Constraint Programming

2. Heuristic Methods
 - Local Search
Local Search

Main idea for combinatorial optimization

- Sequential modification of a small number of decisions
- Incremental evaluation of solutions, generally in $O(1)$ time
 - Lazy propagation of constraints
 - Usage of invariants

~~ Small improvement probability but small time and space complexity
~~ Millions of moves per minute

- (Meta)heuristic rules to drive the search
Metaheuristics

▶ Variable Neighborhood Search and Large Scale Neighborhood Search diversified neighborhoods + incremental algorithmics ("diversified" \(\equiv\) multiple, variable-size, and rich).

▶ Tabu Search: Online learning of moves
 Discard undoing moves,
 Discard inefficient moves
 Improve efficient moves selection

▶ Simulated annealing
 Allow degrading solutions

▶ “Restart” + parallel search
 Avoid local optima
 Improve search space coverage
Local Search Modeling

Can be done within the same framework of Constraint Programming. See Constraint Based Local-Search (Hentenryck and Michel) [B4].

- Decide the **variables**.
 An assignment of these variables should identify a candidate solution or a candidate solution must be retrievable efficiently.
 Must be linked to some Abstract Data Type (arrays, sets, permutations).

- Express the **constraints** on these variables

No restrictions are posed on the language in which the above two elements are expressed.
Local Search

Given a (combinatorial) optimization problem Π and one of its instances π:

- **search space** $S(\pi)$
 specified by **candidate solution representation**:
 discrete structures: sequences, permutations, graphs, partitions
 (e.g., for SAT: array, sequence of all truth assignments to propositional variables)

Note: **solution set** $S'(\pi) \subseteq S(\pi)$
(e.g., for SAT: models of given formula)
Local Search

Given a (combinatorial) optimization problem Π and one of its instances π:

- **search space** $S(\pi)$
 - specified by *candidate solution representation*:
 - discrete structures: sequences, permutations, graphs, partitions
 - *(e.g., for SAT: array, sequence of all truth assignments to propositional variables)*

 Note: *solution set* $S'(\pi) \subseteq S(\pi)$
 - *(e.g., for SAT: models of given formula)*

- **evaluation function** $f_\pi : S(\pi) \to \mathbb{R}$
 - *(e.g., for SAT: number of false clauses)*
Local Search

Given a (combinatorial) optimization problem Π and one of its instances π:

- **search space** $S(\pi)$
 specified by **candidate solution representation**:
 discrete structures: sequences, permutations, graphs, partitions
 (e.g., for SAT: array, sequence of all truth assignments to propositional variables)

 Note: solution set $S'(\pi) \subseteq S(\pi)$
 (e.g., for SAT: models of given formula)

- **evaluation function** $f_\pi : S(\pi) \rightarrow \mathbb{R}$
 (e.g., for SAT: number of false clauses)

- **neighborhood function**, $N_\pi : S \rightarrow 2^{S(\pi)}$
 (e.g., for SAT: neighboring variable assignments differ in the truth value of exactly one variable)
Local Search Algorithm
Further components [according to [HS]]

- set of memory states $M(\pi)$
 (may consist of a single state, for LS algorithms that do not use memory)
Local Search Algorithm
Further components [according to [HS]]

- **set of memory states** $M(\pi)$
 (may consist of a single state, for LS algorithms that do not use memory)

- **initialization function** $\text{init} : \emptyset \rightarrow S(\pi)$
 (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over initial search positions and memory states)
Local Search Algorithm

Further components [according to [HS]]

- **set of memory states** $M(\pi)$
 (may consist of a single state, for LS algorithms that do not use memory)

- **initialization function** $\text{init} : \emptyset \rightarrow S(\pi)$
 (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over initial search positions and memory states)

- **step function** $\text{step} : S(\pi) \times M(\pi) \rightarrow S(\pi) \times M(\pi)$
 (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over subsequent, neighboring search positions and memory states)
Local Search Algorithm
Further components [according to [HS]]

- set of memory states $M(\pi)$
 (may consist of a single state, for LS algorithms that do not use memory)

- initialization function $\text{init} : \emptyset \rightarrow S(\pi)$
 (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over initial search positions and memory states)

- step function $\text{step} : S(\pi) \times M(\pi) \rightarrow S(\pi) \times M(\pi)$
 (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over subsequent, neighboring search positions and memory states)

- termination predicate $\text{terminate} : S(\pi) \times M(\pi) \rightarrow \{\top, \bot\}$
 (determines the termination state for each search position and memory state)
Example: Local Search for SAT

Example: Uninformed random walk for SAT (1)

- search space S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)
Example: Local Search for SAT

Example: Uninformed random walk for SAT (1)

- **search space** S: set of all truth assignments to variables in given formula F
 (solution set S': set of all models of F)

- **neighborhood relation** \mathcal{N}: 1-flip neighborhood, i.e., assignments are neighbors under \mathcal{N} iff they differ in the truth value of exactly one variable

- **evaluation function** not used, or $f(s) = 0$ if model $f(s) = 1$ otherwise
Example: Local Search for SAT

Example: Uninformed random walk for SAT (1)

- **search space** S: set of all truth assignments to variables in given formula F
- **solution set** S': set of all models of F

- **neighborhood relation** \mathcal{N}: 1-flip neighborhood, i.e., assignments are neighbors under \mathcal{N} iff they differ in the truth value of exactly one variable

- **evaluation function** not used, or $f(s) = 0$ if model $f(s) = 1$ otherwise

- **memory**: not used, i.e., $M := \{0\}$
Example: Uninformed random walk for SAT (2)

- initialization: uniform random choice from \(S \), i.e.,

 \[
 \text{init}(, \{ a', m \}) := \frac{1}{|S|} \text{ for all assignments } a' \text{ and memory states } m
 \]
Example: Uninformed random walk for SAT (2)

- **initialization**: uniform random choice from S, i.e.,
 \[\text{init}(, \{a', m\}) := \frac{1}{|S|} \]
 for all assignments a' and memory states m

- **step function**: uniform random choice from current neighborhood, i.e.,
 \[\text{step}(\{a, m\}, \{a', m\}) := \frac{1}{|N(a)|} \]
 for all assignments a and memory states m, where
 \[N(a) := \{a' \in S \mid N(a, a')\} \]
 is the set of all neighbors of a.
Example: Uninformed random walk for SAT (2)

- **initialization**: uniform random choice from S, i.e.,
 \[
 \text{init}(\{a', m\}) := \frac{1}{|S|}
 \]
 for all assignments a' and memory states m

- **step function**: uniform random choice from current neighborhood, i.e.,
 \[
 \text{step}(\{a, m\}, \{a', m\}) := \frac{1}{|N(a)|}
 \]
 for all assignments a and memory states m,
 where $N(a) := \{a' \in S \mid N(a, a')\}$ is the set of all neighbors of a.

- **termination**: when model is found, i.e.,
 \[
 \text{terminate}(\{a, m\}, \{\top\}) := 1 \text{ if } a \text{ is a model of } F, \text{ and } 0 \text{ otherwise.}
 \]
N-Queens Problem

N-Queens problem

Input: A chessboard of size $N \times N$

Task: Find a placement of n queens on the board such that no two queens are on the same row, column, or diagonal.
Local Search Modeling

Random Walk

```cpp
import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
    select(q in Size, v in Size) {
        queen[q] := v;
        cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<endl;
    }
    it = it + 1;
}
cout << queen << endl;
```
import cots;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
 select(q in Size : S.violations(queen[q])>0, v in Size) {
 queen[q] := v;
 cout << "chng @ " << it << ": queen["" << q << "] := "" << v << " viol: " << S.violations() << endl;
 }
 it = it + 1;
}
cout << queen << endl;