
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

March 21, 2020
Marco Chiarandini

DM865 - Heuristics and Approximation Algorithms

Obligatory Assignment – Part 1, Spring 2020

Deadline: 31st March 2020 at noon.
Deadline: April 13, 2020 at noon.

• This is the first obligatory assignment of Heuristics and Approximation Algorithms.

• The assignment has to be carried out in pairs or individually. Groups of larger sizes are not allowed.
Individual participation is discouraged.

• The submission is electronic via http://valkyrien.imada.sdu.dk/DOApp/.

• You have to hand in:

– The source code of your implementation of a heuristic solver. Submit all your files in a .tgz

archive. Your must comply to the requirements listed in this document.

– A report that describes the work you have done and presents the results obtained. The document
should not exceed 10 pages and must be in PDF format. You cannot list source code, in case use
pseudocode. You can write in Danish or in English.

• At the end of the report, add a process analysis where you explain how the group work went.

• Changes to this document after its first publication on February 26 may occur. They will be emphasized
in color and if they are major they will be announced via BlackBoard.

• A starting package containing the instances and the code to read them is available at this link:

https://github.com/DM865/CVRP

Introduction

The aim of this assignment is to design, implement and report local search heuristic algorithms for solving
the Capacitated Vehicle Routing Problem (CVRP).

Make sure you have read the whole document before you start to work.

Heuristics for Capacitated Vehicle Routing

In vehicle routing problems we are given a set of transportation requests and a fleet of vehicles and we seek to
determine a set of vehicle routes to perform all (or some) transportation requests with the given vehicle fleet at
minimum cost; in particular, we decide which vehicle handles which requests in which sequence so that all vehicle
routes can be feasibly executed.
The capacitated vehicle routing problem (CVRP) is the most studied version of vehicle routing problems.
In the CVRP, the transportation requests consist of the distribution of goods from a single depot, denoted as
point 0, to a given set of n other points, typically referred to as customers, N = {1, 2, . . . , n}. The amount that
has to be delivered to customer i ∈ N is the customer’s demand, which is given by a scalar qi ≥ 0, e.g., the
weight of the goods to deliver. The fleet K = {1, 2, . . . , |K|} is assumed to be homogeneous, meaning that |K|
vehicles are available at the depot, all have the same capacity Q > 0, and are operating at identical costs. A
vehicle that services a customer subset S ⊆ N starts at the depot, moves once to each of the customers in S,
and finally returns to the depot. A vehicle moving from i to j incurs the travel cost cij.
The given information can be structured using an undirected graph. Let V = {0} ∪ N = {0, 1, . . . , n} be the
set of vertices (or nodes). It is convenient to define q0 := 0 for the depot. In the symmetric case, when the
cost for moving between i and j does not depend on the direction, i.e., either from i to j or from j to i, the

1

DM865 – Spring 2019 Assignment Sheet

Instance Construction Heuristic Local Search
KLB cost time (sec) cost time (sec)

CMT01
CMT02
CMT03
CMT04
CMT05
CMT11
CMT12

Table 1: The table shows the median results from 5 runs per instance of the best heuristic designed. The time
limit was set to 60 seconds on a Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 16 GB RAM running Ubuntu
16.04.

underlying graph G = (V, E) is complete and undirected with edge set E = {e = (i, j) = (j, i) : i, j ∈ V, i 6= j}
and edge costs cij for {i, j} ∈ E. Overall, a CVRP instance is uniquely defined by a complete weighted graph
G = (V, E, cij, qi) together with the size |K| of the of the vehicle fleet K and the vehicle capacity Q.
A route (or tour) is a sequence r = (i0, i1, i2, . . . , is, is+1) with i0 = is+1 = 0, in which the set S = {i1, . . . , is} ⊆ N
of customers is visited. The route r has cost c(r) = ∑s

p=0 cip ,ip+1 . It is feasible if the capacity constraint
q(S) := ∑i∈S qi ≤ Q holds and no customer is visited more than once, i.e., ij 6= ik for all 1 ≤ j ≤ k ≤ s. In
this case, one says that S ⊆ N is a feasible cluster. A solution to a CVRP consists of K feasible routes, one for
each vehicle k ∈ K. The routes r1, r2, . . . , r|K| and the corresponding clusters S1, S2, . . . , S|K| provide a feasible
solution to the CVRP if all routes are feasible and the clusters form a partition of N. Hence, the CVRP consists
of two interdependent tasks:

(i) the partitioning of the customer set N into feasible clusters S1, . . . , S|K|;

(ii) the routing of each vehicle k ∈ K through {0} ∪ Sk.

1 Your Tasks

Using the test instances described below, you have to submit a report and a Python program that address the
following tasks:

• Determine an easy-to-calculate lower bound KLB to the number of vehicles needed to satisfy the demand
of all customers. Report in your final text document a table like Table 1 with the lower bounds thus
found for each given instance.

• Design and implement one or more construction heuristics.

• Design and implement one or more iterative improvement algorithms. They must terminate in a local
optimum.

• Undertake an experimental analysis to compare and configure the algorithms from the previous two
points.

• Describe the work done in a report of at most 10 pages. The report must at least contain a description
of the best algorithm designed and the experimental analysis conducted. The level of detail must be
such that it makes it possible for the reader to reproduce your work.

• In an appendix of the report (that does not count in the 10 pages) report the results of the best algorithms
on the test instances made available (see below) in a table like Table 1. You are welcome to report also
graphical comparisons and assessment of the way your algorithms scale with respect to the size of the
instance (this must be included in the 10 pages).

• Submit your best algorithm in the upload page. The programs will be run on a 64-bit machine with
Ubuntu Linux, equivalent to those in the terminal room. A time limit of 60 seconds will be imposed.
If your algorithms are faster you can consider using some basic metaheuristic like random restart or
neighborhood change. No other metaheuristic is allowed in this assignment.

2

DM865 – Spring 2019 Assignment Sheet

Figure 1: A solution for the A-n32-k05 instance

Figure 2: The CMT instances

Practicalities

Associated to this document there is a GIT repository at:

https://github.com/DM865/CVRP

The repository is made of a directory data/ containing the instances, a directory src/ containing some initial
Python 3 code to read the instances, output a solution and produce a graphical view of solutions. The code
provides also a framework within which to organize your implementation. The directory tex contains the
sources of this document and can be therefore ignored.

Instances In the directory data/ you find the instance A-n32-k05.xml that is a small toy instance with 32
nodes. This instance and a heuristic solution is represented in Figure 1. In the directory data/CMT you find
the set CMT1 of middle size instances with number of nodes ranging between 51 and 200, and in the directory
data/Golden you find the set Golden2 of large size instances with number of nodes ranging between 241 and
484. The displacement of the nodes in these instances is depicted in Figure 2 and 3. The best known solutions
for these instances are reported in Table 2.

Source Code The Python code in the directory src/ contains the following files:

1Christofides, N., Mingozzi, A., Toth, P. The vehicle routing problem. 1979. In Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (Eds.),
Combinatorial Optimization. Wiley, Chichester, pp. 315– 338.

2Golden, B. L., Wasil, E.A., Kelly, J.P., Chao, I.-M. Metaheuristics in Vehicle Routing. 1998. In T. G. Crainic and G. Laporte, eds, Fleet
Management and Logistics. Boston: Kluwer, pp. 33-56.

3

DM865 – Spring 2019 Assignment Sheet

Figure 3: The Golden instances

4

DM865 – Spring 2019 Assignment Sheet

instance nodes best known

CMT01 51 524.61*
CMT02 76 835.26*
CMT03 101 826.14*
CMT04 151 1028.42*
CMT05 200 1291.29*
CMT11 121 1042.11*
CMT12 101 819.56*

instance nodes best known

Golden 01 241 5623.47
Golden 02 321 8404.61
Golden 03 401 11036.22
Golden 04 481 13592.88
Golden 05 201 6460.98
Golden 06 281 8404.26
Golden 07 361 10102.68
Golden 08 441 11635.34
Golden 09 256 579.71
Golden 10 324 736.26
Golden 11 400 912.84
Golden 12 484 1102.69
Golden 13 253 857.19
Golden 14 321 1080.55
Golden 15 397 1337.92
Golden 16 481 1612.50
Golden 17 241 707.76
Golden 18 301 995.13
Golden 19 361 1365.60
Golden 20 421 1818.32

Table 2: The best known solutions on the set of instances CMT and Golden. A star indicates that the solution
has been proven optimal.

• data.py that implements the class Data to maintain the data associated with the input instance. It
contains an instance reader for the XML format. Objects of this class contain the following data that
will be relevant to you: capacity giving the capacity of the vehicle and nodes that is a tuple container
of the nodes of the given network. Each element from the tuple nodes is a dictionary with the following
keys and values: id, the original identifier of the node from the input file, pt, the coordinates of the
node in complex numbers notation as we saw for the TSP, tp, the type of customer: 0 if a depot and 1 if
a customer, rq, the quantity demanded by the node (if it is a depot this value is 0). Nodes in the tuple
nodes are organized in such a way that the depot is the first element followed by all others. Each node
can be accessed in constant time through the index in the tuple. Hence, internally the depot has always
index zero.

The class Data contains also methods for printing the instance, reporting statistics, calculating distances
and plotting.

• solution.py that implements the class Solution to store data relative to a candidate solution. For now
it assumes to store the solution in a list of lists, called routes. However, this is up to changes according
to your needs. It then assumes that you finish implementing the methods valid_solution and cost

that determine the feasibility and the quality of the candidate solution.

The class Solution contains also methods for writing the solution file and for plotting the solution.
These methods assume that solutions are represented as lists of lists, where every inner list representing
a route starts with the depot and ends with the depot. Note that the solution writer outputs the original
identifier of the nodes and not the one used to represent them internally.

• solverCH.py that implements the class ConstructionHeuristics. Currently only a canonical construc-
tion is implemented that routes costumers in the order they are stored. The implementation might be
helpful to see how to use the data from an object of class Data.

• solverLS.py that implements the class LocalSearch.

• main.py that implements the main program defining the objects and calling the methods defined in the
other files. It provides a starting example that can be modified at your best convenience. It also defines
the parameters to be specified when the program is run.

The program is executed as specified below:

$ python3 main.py -h

usage: main.py [-h] [-o OUTPUT_FILE] -t TIME_LIMIT instance_file

5

DM865 – Spring 2019 Assignment Sheet

positional arguments:

instance_file The path to the file of the instance to solve

optional arguments:

-h, --help show this help message and exit

-o OUTPUT_FILE The file where to save the solution and, in case, plots

-t TIME_LIMIT The time limit

marco@nat-102098:~/IMADA/DM865/CVRP/src$

for example:

python3 main.py -t 30 -o A-n32-k05 ../data/A-n32-k05.xml

Included in the directory there is also a Makefile that can be used to automatize tasks. For example, the call
above can be also achieved with:

make A-n32-k05

In addition, in the Makefile there is an example on how to use the code profiler: cProfile.
It is possible to modify all these files and to add new ones.

Submission Guidelines

The submission is done from http://valkyrien.imada.sdu.dk/DOApp/

You have to submit a tar gzip file. Your directory must be organized as follows:

ob1

|- doc

|- src

In the directory doc put the report with your full name and username. Keep it shorter than 10 pages.
In src put all the source code.
You can then create the tar gzip file from the directory ob1/ as follows:

tar czvf ob1.tgz doc src

You can submit as many times as you wish, each new submission overwrites the previous one.
To be considered acceptable, your source code must satisfy the following requirements:

i) it must execute the heuristic that you chose as the best one when called as follows:

python3 main.py -t 30 -o [an_instance] ../data/[an_instance].xml

The program must solve the specified instance and halt before the specified time limit.

ii) At termination the program must write the solution in the format described below in a file whose
name is the one given for the parameter -o plus the extension .sol. The starting code provided has a
function write_to_file to do this but probably you will need to modify it if you change the solution
representation. The function is called from the main file. The solution written in the file must be valid,
that is, feasible.

Right after the submission the program will be tested and if it does not satisfy the requiremets above you will
receive an email and the submission will be invalid.
In addition, the submission system will execute your program and compare it against your peers on a set
of unspecified instances. Therefore, you should submit your best algorithm early and eventually revise
your submission. Before submitting, test your implementation on the IMADA machines. If you are using
additional python modules not present in setting of the Computer Lab machines, write to Marco.

6

DM865 – Spring 2019 Assignment Sheet

Solution file The solution file must list the routes one per line. Each route is a comma separated list of
nodes to be visited in the given order. The node identifier must be the original one from the input file.
Routes must start with the depot and finish with the depot.
The following listing provides an example of solution file for a valid solution to the instance CMT02:

76,1,2,3,4,5,6,7,76

76,8,9,10,11,12,13,76

76,14,15,16,17,18,19,20,76

76,21,22,23,24,25,26,27,76

76,28,29,30,31,32,76

76,33,34,35,36,37,38,39,76

76,40,41,42,43,44,45,76

76,46,47,48,49,50,51,52,76

76,53,54,55,56,57,58,59,76

76,60,61,62,63,64,65,66,76

76,67,68,69,70,71,72,73,74,75,76

Solutions files have extension .sol.

Remarks

Remark 1 This is a list of factors that will be taken into account in the evaluation:

• quality of the final results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• organization of experiments that guarantees reproducibility of conclusions;

• clarity of the report;

• presence of the analysis of the computational costs involved in the main operations of the local
search.

• effective use of graphics in the presentation of experimental results.

Remark 2 Note that a few, well thought algorithms are better than many naive ones!

Remark 3 If you search on Internet, the literature on heuristics for vehicle routing problems is vast but not
every article is relevant. The following are three relevant articles:

• Clarke, G., and J. W. Wright. ”Scheduling of Vehicles from a Central Depot to a Number of Delivery
Points.” Operations Research 12, no. 4 (1964): 568-81. http://www.jstor.org/stable/167703.

• Ann Melissa Campbell and Martin Savelsbergh, Efficient Insertion Heuristics for Vehicle Routing
and Scheduling Problems, Transportation Science, 38(3), 369-378, 2004, http://dx.doi.org/10.
1287/trsc.1030.0046,

• G. Kindevater and M. Savelsbergh, ”Vehicle routing 2 - handling side constraints,” tech. rep.,
School of Industrial and Systems Eng., Georgia Institute of Tech., 1995.

7

