DM865 - Spring 2020
Heuristics and Approximation Algorithms

Experimental Analysis (cnt'd)

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

1. Inferential Statistics

Statistical Tests
Experimental Designs
Applications to Our Scenarios
2. Race: Sequential Testing
3. Algorithm Selection

1. Inferential Statistics

Statistical Tests
Experimental Designs
Applications to Our Scenarios
2. Race: Sequential Testing
3. Algorithm Selection

Inferential Statistics

- We work with samples (instances, solution quality)
- But we want sound conclusions: generalization over a given population (all runs, all possible instances)
- Thus we need statistical inference

Since the analysis is based on finite-sized sampled data, statements like
"the cost of solutions returned by algorithm \mathcal{A} is smaller than that of algorithm \mathcal{B} "
must be completed by
"at a level of significance of 5% ".

A Motivating Example

- There is a competition and two stochastic algorithms \mathcal{A}_{1} and \mathcal{A}_{2} are submitted.
- We run both algorithms once on n instances. On each instance either \mathcal{A}_{1} wins $(+)$ or \mathcal{A}_{2} wins $(-)$ or they make a tie $(=)$.

Questions:
(1) If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?
(2) How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

A Motivating Example

- p: probability that \mathcal{A}_{1} wins on each instance (+)
- n : number of runs without ties
- Y : number of wins of algorithm \mathcal{A}_{1}

If each run is indepenedent and consitent:

Binomial Distribution: Trials $=30$, Probability of success $=0.5$

1 If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?

Under these conditions, we can check how unlikely the situation is if it was $p(+) \leq p(-)$. If $p(+)=0.5$ (ie, $p(+)=p(-))$ then the chance that algorithm \mathcal{A}_{1} wins 7 or more times out of 10 is 17.2% : quite high!

2 How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

To answer this question, we compute the 95%-quantile, i.e., $y: \operatorname{Pr}[Y \geq y]<0.05$ with $p=0.5$ at different values of n :

n	10	11	12	13	14	15	16	17	18	19	20
y	9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which $p=0.5$

Statistical tests

General procedure:

- Assume that data are consistent with a null hypothesis H_{0} (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p -value.
- Do not reject H_{0} if the p-value is larger than an user defined threshold called level of significance α.
- Alternatively, (p -value $<\alpha$), H_{0} is rejected in favor of an alternative hypothesis, H_{1}, at a level of significance of α.

Inferential Statistics

Two kinds of errors may be committed when testing hypothesis:

$$
\begin{aligned}
& \alpha=P(\text { type I error })=P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right) \\
& \beta=P(\text { type II error })=P\left(\text { fail to reject } H_{0} \mid H_{0} \text { is false }\right)
\end{aligned}
$$

General rule:
(1) specify the type I error or level of significance α
(2) seek the test with a suitable large statistical power, i.e., $1-\beta=P$ (reject $H_{0} \mid H_{0}$ is false)

Theorem: Central Limit Theorem

If X^{n} is a random sample from an arbitrary distribution with mean μ and variance σ then the average \bar{X}^{n} is asymptotically normally distributed, i.e.,

$$
\bar{X}^{n} \approx N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \text { or } \quad z=\frac{\bar{X}^{n}-\mu}{\sigma / \sqrt{n}} \approx N(0,1)
$$

- Consequences:
- allows inference from a sample
- allows to model errors in measurements: $X=\mu+\epsilon$
- Issues:
- n should be enough large
- μ and σ must be known

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

Samples of size 1, 5, 15, 50 repeated 100 times

$\mathrm{n}=5$

$\mathrm{n}=15$

$n=50$

A test of hypothesis determines how likely a sampled estimate $\hat{\theta}$ is to occur under some assumptions on the parameter θ of the population.

$$
\operatorname{Pr}\left\{\mu-z_{1} \frac{\sigma}{\sqrt{n}} \leq \bar{X} \leq \mu+z_{2} \frac{\sigma}{\sqrt{n}}\right\}=1-\alpha
$$

A confidence interval contains all those values that a parameter θ is likely to assume with probability $1-\alpha: \operatorname{Pr}\left(\hat{\theta}_{1}<\theta<\hat{\theta}_{2}\right)=1-\alpha$

$$
\operatorname{Pr}\left\{\bar{X}-z_{1} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{2} \frac{\sigma}{\sqrt{n}}\right\}=1-\alpha
$$

Statistical Tests

The Procedure of Test of Hypothesis
(1) Specify the parameter θ and the test hypothesis,

$$
\theta=\mu_{1}-\mu_{2} \quad\left\{\begin{array}{l}
H_{0}: \theta=0 \\
H_{1}: \theta \neq 0
\end{array}\right.
$$

(2) Obtain $P(\theta \mid \theta=0)$, the null distribution of θ
(3) Compare $\hat{\theta}$ with the $\alpha / 2$-quantiles (for two-sided tests) of $P(\theta \mid \theta=0)$ and reject or not H_{0} according to whether $\hat{\theta}$ is larger or smaller than this value.

Statistical Tests

The Confidence Intervals Procedure
(1) Specify the parameter θ and the test hypothesis,

$$
\theta=\mu_{1}-\mu_{2} \quad\left\{\begin{array}{l}
H_{0}: \theta=0 \\
H_{1}: \theta \neq 0
\end{array}\right.
$$

(2) Obtain $P(\theta, \theta=0)$, the null distribution of θ in correspondence of the observed estimate $\hat{\theta}$ of the sample X
(3) Determine $\left(\hat{\theta}^{-}, \hat{\theta}^{+}\right)$such that $\operatorname{Pr}\left\{\hat{\theta}^{-} \leq \theta \leq \hat{\theta}^{+}\right\}=1-\alpha$.
(4) Do not reject H_{0} if $\theta=0$ falls inside the interval $\left(\hat{\theta}^{-}, \hat{\theta}^{+}\right)$. Otherwise reject H_{0}.

$$
\theta=0
$$

Statistical Tests

The Confidence Intervals Procedure

$$
\theta^{*}=\bar{X}_{1}^{*}-\bar{X}_{2}^{*}
$$

(1) Specify the parameter θ and the test hypothesis,

$$
\theta=\mu_{1}-\mu_{2} \quad\left\{\begin{array}{l}
H_{0}: \theta=0 \\
H_{1}: \theta \neq 0
\end{array}\right.
$$

(2) Obtain $P(\theta, \theta=0)$, the null distribution of θ in correspondence of the observed estimate $\hat{\theta}$ of the sample X
(3) Determine $\left(\hat{\theta}^{-}, \hat{\theta}^{+}\right)$such that
$\operatorname{Pr}\left\{\hat{\theta}^{-} \leq \theta \leq \hat{\theta}^{+}\right\}=1-\alpha$.
(4) Do not reject H_{0} if $\theta=0$ falls inside the interval ($\hat{\theta}^{-}, \hat{\theta}^{+}$). Otherwise reject H_{0}.

Kolmogorov-Smirnov Tests

The test compares empirical cumulative distribution functions.

It uses maximal difference between the two curves, $\sup _{x}\left|F_{1}(x)-F_{2}(x)\right|$, and assesses how likely this value is under the null hypothesis that the two curves come from the same data

The test can be used as a two-samples or single-sample test (in this case to test against theoretical distributions: goodness of fit)

Parametric assumptions:

- independence
- homoschedasticity
- normality

- Rank based tests
- Permutation tests
- Exact
- Conditional Monte Carlo

Preparation of the Experiments

Variance reduction techniques

- Blocking on instances
- Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance Study factors until the improvement in the response variable is deemed small
- Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances [Birattari, 2004]

The Design of Experiments for Algorithms

- Statement of the objectives of the experiment
- Comparison of different algorithms
- Impact of algorithm components
- How instance features affect the algorithms
- Identification of the sources of variance
- Treatment factors (qualitative and quantitative)
- Controllable nuisance factors \Leftarrow blocking
- Uncontrollable nuisance factors \Leftarrow measuring
- Definition of factor combinations to test

Easiest design: Unreplicated or Replicated Full Factorial Design

- Running a pilot experiment and refine the design
- Bugs and no external biases
- Ceiling or floor effects
- Rescaling levels of quantitative factors
- Detect the number of experiments needed to obtained the desired power.

Experimental Design

Algorithms \Rightarrow Treatment Factor; Instances \Rightarrow Blocking/Random Factor

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	\ldots	Algorithm \mathbf{k}
Instance 1	X_{11}	X_{12}		$X_{1 k}$
\vdots	\vdots	\vdots		\vdots
Instance b	$X_{b 1}$	$X_{b 2}$		$X_{b k}$

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	\ldots
Instance 1	$X_{111}, \ldots, X_{11 r}$	$X_{121}, \ldots, X_{12 r}$	
Instance 2	$X_{211}, \ldots, X_{21 r}$	$X_{221}, \ldots, X_{22 r}$	
\vdots	\vdots	\vdots	$X_{1 k 1}, \ldots, X_{1 k r}$
Instance b	$X_{b 11}, \ldots, X_{b 1 r}$	$X_{b 21}, \ldots, X_{b 2 r}$	$X_{2 k 1}, \ldots, X_{\mathbf{2 k r}}$

Multiple Comparisons

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\ldots \quad H_{1}:\{\text { at least one differs }\}
$$

Applying a statistical test to all pairs the error of Type I is not α but higher:

$$
\alpha_{E X}=1-(1-\alpha)^{c}
$$

Eg, for $\alpha=0.05$ and $c=3 \Rightarrow \alpha_{E X}=0.14$!
Adjustment methods

- Protected versions: global test + no adjustments
- Bonferroni $\alpha=\alpha_{E X} / c$ (conservative)
- Tukey Honest Significance Method (for parametric analysis)
- Holm (step-wise)
- Other step-wise procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer grained analysis is performed to distinguish where important differences are.

Statistical Tests

Several runs on a single instance

Global tests	Replicated
Parametric	F-test
Non-Parametric Rank based	Kruskall-Wallis Test
Non-Parametric Permutation based	Pooled Permutations
Non-Parametric KS type	Birnbaum-Hall test

Statistical Tests
 Univariate Analysis

Several runs on a single instance

Pairwise tests	Replicated
Parametric	t-test Tukey HSD
Non-Parametric Rank based	Kruskall-Wallis Test or Mann-Whitney test \equiv Wilcoxon Rank Sum Test or Binomial test
Non-Parametric Permutation based	Pooled Permutations
Non-Parametric KS type	Birnbaum-Hall test

- Matched pairs versions: when, when not
- t-test with different variances

Statistical Tests

On various instances (Designs A and B)

Global tests	Unreplicated (Design A)	Replicated (Design B)
Parametric	F-test	F-test
Non-Parametric Rank based	Friedman Test	Friedman Test
Non-Parametric Permutation based	Simple Permutations	Synchronized Permutations

Statistical Tests

On various instances (Designs A and B)

Pairwise tests	Unreplicated	Replicated		
Parametric	t-test	t-test		
Tukey HSD			\quad Tukey HSD	Friedman Test
:---				
Non-Parametric Rank based				
Friedman Test Non-Parametric Permutation based				

- Matched pairs versions: when, when not
- t-test Welch variant: no assumption of equal variances

An Example

SLS algorithms for Graph Coloring:

Results collected on a set of benchmark instances

Instance	HEA		TS ${ }_{\text {N1 }}$		ILS		MinConf		XRLF	
Instance	Succ.	k								
flat300_20_0	10	20	10	20	10	20	10	20	6	20
flat300_26_0	10	26	10	26	10	26	10	26	1	33
flat300_28_0	6	31	4	31	2	31	1	31	1	34
flat1000_50_0	4	50	2	85	6	88	4	87	1	84
flat1000_60_0	4	87	3	88	1	89	4	89	6	87
flat1000_76_0	1	88	1	88	1	89	8	90	6	87
	GLS		$\mathrm{SA}_{\mathrm{N} 2}$		Novelty		$\mathrm{TS}_{\text {N3 }}$			
Instance	Succ.	k	Succ.	k	Succ.	k	Succ.	k		
flat300_20_0	10	20	10	20	1	22	1	33		
flat300_26_0	10	33	1	32	4	29	6	35		
flat300_28_0	8	33	8	33	10	35	4	35		
flat1000_50_0	10	50	1	86	6	54	1	95		
flat1000_60_0	4	90	1	88	4	64	1	96		
flat1000_76_0	8	92	4	89	8	98	1	96		

An Example

Raw data on the

 instances:
> load("gcp-all-classes.dataR")
$>G<-F[F \$ c l a s s==" F l a t "$,
$>$ bwplot (alg ~ col | inst, data=G, scales=list (x=list (relation="free")), pch="|")
$>$ boxplot (err3~alg, data=G,horizontal=TRUE, main=expression (paste ("Invariant error:
> boxplot (rank~alg, data=G,horizontal=TRUE, main="Ranks", notch=TRUE, col="pink")

Note: notches are not appropriate for comparative inference

```
> pairwise.wilcox.test(G$err3,G$alg,paired=TRUE)
```

 Pairwise comparisons using Wilcoxon rank sum test
 data: $G \$ \operatorname{err} 3$ and $G \$ a l g$

	Novelty	HEA	TSinN1	ILS	MinConf	GLS2	XRLF	SAKempeFI
HEA	1.00000	-	-	-	-	-	-	-
TSinN1	1.00000	0.00413	-	-	-	-	-	-
ILS	1.00000	$1.3 e-05$	0.00072	-	-	-	-	-
MinConf	1.00000	$9.4 e-06$	0.00042	1.00000	-	-	-	-
GLS2	1.00000	0.11462	0.94136	1.00000	1.00000	-	-	-
XRLF	0.25509	$1.7 e-05$	0.02624	0.72455	0.47729	1.00000	-	-
SAKempeFI	0.72455	$1.4 e-07$	$3.0 \mathrm{e}-06$	0.02708	0.02113	1.00000	1.00000	-
TSinN3	$3.7 e-08$	$5.8 e-10$						

P value adjustment method: holm
$>\operatorname{par}(\mathrm{las}=1, \operatorname{mar}=\mathrm{c}(3,8,3,1))$
$>$ plot (TukeyHSD (aov (err3~alg*inst, data=G), which="alg"), las=1, mar=c (3,7,3,1))
95% family-wise confidence level

An Example

Minimal Significant Difference (MSD) interval that satisfies simultaneously each comparison

Differences are statistically significant if the confidence intervals do not overlap

1. Inferential Statistics

Statistical Tests
Experimental Designs
Applications to Our Scenarios
2. Race: Sequential Testing
3. Algorithm Selection

Unreplicated Designs

Procedure Race [Birattari 2002]: repeat

Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm until only one candidate left or no more unseen instances;

- F-Race use Friedman test
- Holm adjustment method is typically the most powerful

```
race(wrapper.file, maxExp=0,
    stat.test=c("friedman","t.bonferroni","t.holm","t.none"),
        conf.level=0.95, first.test=5, interactive=TRUE,
            log.file="", no.slaves=0,...)
```


(1) sample new configurations according to a particular distribution,
(2) select the best configurations from the newly sampled ones by means of racing, and
(3) update the sampling distribution in order to bias the sampling towards the best configurations

- Each configurable parameter has associated a sampling distribution that is independent of the sampling distributions of the other parameters, apart from constraints and conditions among parameters.
- numerical parameters: truncated normal distribution
- categorical parameters: discrete distribution.
- The update of the distributions consists in modifying the mean and the standard deviation in the case of the normal distribution, or the discrete probability values of the discrete distributions.
- The update changes the distributions so as to increase the probability of sampling the parameter values of the best configurations found so far.

Outline

1. Inferential Statistics

Statistical Tests
Experimental Designs
Applications to Our Scenarios
2. Race: Sequential Testing
3. Algorithm Selection

Algorithm Selection

Observation: algorithms' performance depends on the problem instance.
Idea: a set of complementary algorithms can be constructed, then identifying when to use which algorithm, we can improve overall performance

Algorithm Selection Problem (aka per-instance algorithm selection or offline algorithm selection) is a meta-algorithmic technique to choose an algorithm from a portfolio on an instance-by-instance basis.

Problem formulation:
Given a portfolio \mathcal{P} of algorithms $\mathcal{A} \in \mathcal{P}$, a set of instances $i \in \mathcal{I}$ and a cost metric $m: \mathcal{P} \times \mathcal{I} \rightarrow \mathbb{R}$, the algorithm selection problem consists in finding a mapping $s: \mathcal{I} \rightarrow \mathcal{P}$ from instances \mathcal{I} to algorithms \mathcal{P} such that the cost $\sum_{i \in \mathcal{I}} m(s(i), i)$ across all instances is optimized

Solution Approaches

- The algorithm selection problem is mainly solved with machine learning techniques.
- represent the problem instances by numerical features f,
- then algorithm selection can be seen as a multi-class classification problem by learning a mapping $f_{i} \mapsto \mathcal{A}$ for a given instance i.
- Instance features are numerical representations of instances. For example, we can count the number of variables, clauses, average clause length for Boolean formulas (static) or the result of running for a short time a stochastic local search solver on a Boolean formula (probing).

Solution Approaches

- Regression Approach
predict the performance of each algorithm $\hat{m}_{\mathcal{A}}: \mathcal{I} \rightarrow \mathbb{R}$ and select the algorithm with the best predicted performance $\arg \min _{\mathcal{A} \in \mathcal{P}} \hat{m}_{\mathcal{A}}(i)$ for a new instance i
- Clustering Approach

Training consists of identifying the homogeneous clusters via an unsupervised clustering approach and associating an algorithm with each cluster. A new instance is assigned to a cluster and the associated algorithm selected.

- Pairwise Cost-Sensitive Classification Approach
learn pairwise models between every pair of classes (here algorithms) and choose the class that was predicted most often by the pairwise models. We can weight the instances of the pairwise prediction problem by the performance difference between the two algorithms (we care most about getting predictions with large differences correct, but the penalty for an incorrect prediction is small if there is almost no performance difference). Therefore, each instance i for training a classification model \mathcal{A}_{1} vs \mathcal{A}_{2} is associated with a cost $\left|m\left(\mathcal{A}_{1}, i\right)-m\left(\mathcal{A}_{2}, i\right)\right|$

Variants of Algorithm Selection

- Online Selection

Online algorithm selection in Hyper-heuristic refers to switching between different algorithms during the solving process. In contrast, (offline) algorithm selection is an one-shot game where we select an algorithm for a given instance only once.

- Computation of Schedules we select a time budget for each algorithm on a per-instance base. It improves the performance of selection systems in particular if the instance features are not very informative and a wrong selection of a single solver is likely.
- Selection of Parallel Portfolios

Given the increasing importance of parallel computation, an extension of algorithm selection for parallel computation is parallel portfolio selection, in which we select a subset of the algorithms to simultaneously run in a parallel portfolio.

