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Local Search Algorithms
Local Search RevisitedLocal Search

• Model

• Variables  solution representation, search space
• Constraints:

– implicit
– one-way defining invariants
– soft

• evaluation function

• Search (solve an optimization problem)
• Construction heuristics
• Neighborhoods, Iterative Improvement, (Stochastic) local search
• Metaheuristics: Tabu Search, Simulated Annealing, Iterated Local Search
• Population based metaheuristics
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Local Search Algorithms
Local Search RevisitedLocal Search Algorithms

Given a (combinatorial) optimization problem Π and one of its instances π:

1 search space S(π)

• specified by the definition of (finite domain, integer) variables and their values handling implicit
constraints

• all together they determine the representation of candidate solutions
• common solution representations are discrete structures such as: sequences, permutations,

partitions, graphs

Note: solution set S ′(π) ⊆ S(π)

5



Local Search Algorithms
Local Search RevisitedLocal Search Algorithms (cntd)

2 evaluation function fπ : S(π)→ R

• it handles the soft constraints and the objective function

3 neighborhood function, Nπ : S → 2S(π)

• defines for each solution s ∈ S(π) a set of solutions N(s) ⊆ S(π) that are in some sense close to
s.
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Local Search RevisitedLocal Search Algorithms (cntd)

Further components [according to [HS]]

4 set of memory states M(π)
(may consist of a single state, for LS algorithms that do not use memory)

5 initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial search positions and
memory states)

6 step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over subsequent, neighboring
search positions and memory states)

7 termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each search position and memory state)
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Local Search Algorithms
Local Search RevisitedLocal search — global view

c

s

Neighborhood graph
• vertices: candidate solutions (search

positions)

• vertex labels: evaluation function

• edges: connect “neighboring” positions

• s: (optimal) solution

• c: current search position
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Local Search Algorithms
Local Search RevisitedLocal Search Algorithms

Note:

• Local search implements a walk through the neighborhood graph

• Procedural versions of init, step and terminate implement sampling from respective
probability distributions.

• Local search algorithms can be described as Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order MP if (limited) memory m.
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Local Search Algorithms
Local Search RevisitedLocal Search (LS) Algorithm Components

Step function

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., s ′ ∈ N(s) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

• Search trajectory: finite sequence of search positions 〈s0, s1, . . . , sk〉 such that (si−1, si ) is a
search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater than zero, i.e., init({s0,m}) > 0
for some memory state m ∈ M.

• Search strategy: specified by init and step function; to some extent independent of problem
instance and other components of LS algorithm.
• random
• based on evaluation function
• based on memory
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Local Search Algorithms
Local Search RevisitedIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

• If more than one neighbor has better cost then need to choose one
(heuristic pivot rule)

• The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

• Issue: how to avoid getting trapped in bad local optima?
• use more complex neighborhood functions
• restart
• allow non-improving moves
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Local Search Algorithms
Local Search RevisitedMetaheuristics

• “Restart” + parallel search
Avoid local optima
Improve search space coverage

• Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics
("diversified" ≡ multiple, variable-size, and rich).

• Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

• Simulated annealing
Allow degrading solutions
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Local Search Algorithms
Local Search RevisitedSummary: Local Search Algorithms

For given problem instance π:

1 search space Sπ, solution representation: variables + implicit constraints

2 evaluation function fπ : S → R, soft constraints + objective

3 neighborhood relation Nπ ⊆ Sπ × Sπ

4 set of memory states Mπ

5 initialization function init : ∅ → Sπ ×Mπ

6 step function step : Sπ ×Mπ → Sπ ×Mπ

7 termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Local Search Algorithms
Local Search RevisitedDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, sb) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅

However, the algorithm on the left has little guidance, hence most often decision problems are
transformed in optimization problems by, eg, couting number of violations.
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Local Search Algorithms
Local Search RevisitedLS Algorithm Components

Search space

Search Space

Solution representations defined by the variables and the implicit constraints:

• permutations (implicit: alldiffrerent)
• linear (scheduling problems)
• circular (traveling salesman problem)

• arrays (implicit: assign exactly one, assignment problems: GCP)

• sets (implicit: disjoint sets, partition problems: graph partitioning, max indep. set)

 Multiple viewpoints are useful in local search!
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Local Search RevisitedLS Algorithm Components

Evaluation function

Evaluation (or cost) function:
• function fπ : Sπ → Q that maps candidate solutions of

a given problem instance π onto rational numbers (most often integer),
such that global optima correspond to solutions of π;

• used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
• Evaluation function: part of LS algorithm.
• Objective function: integral part of optimization problem.
• Some LS methods use evaluation functions different from given objective function (e.g.,

guided local search).
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Local Search Algorithms
Local Search RevisitedConstrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

• feasibility
eg, treveling salesman problem with time windows: customers must be visited within their
time window.

• optimization
minimize the total tour.

How to combine them in local search?

• sequence of feasibility problems
• staying in the space of feasible candidate solutions
• considering feasible and infeasible configurations
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Local Search Algorithms
Local Search RevisitedConstraint-based local search

From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

• decomposition-based violations
number of violated constraints, eg: alldiff

• variable-based violations
min number of variables that must be changed to satisfy c .

• value-based violations
for constraints on number of occurences of values

• arithmetic violations

• combinations of these
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Local Search Algorithms
Local Search RevisitedConstraint-based local search

From Van Hentenryck and Michel

Combinatorial constraints

• alldiff(x1, . . . , xn):
Let a be an assignment with values V = {a(x1), . . . , a(xn)} and cv = #a(v , x) be the number
of occurrences of v in a.
Possible definitions for violations are:

• viol =
∑

v∈V I (max{cv − 1, 0} > 0) value-based
• viol = maxv∈V max{cv − 1, 0} value-based
• viol =

∑
v∈V max{cv − 1, 0} value-based

• # variables with same value, variable-based, here leads to same definitions as previous three

Arithmetic constraints

• l ≤ r  viol = max{l − r , 0}
• l = r  viol = |l − r |
• l 6= r  viol = 1 if l = r , 0 otherwise
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Local Search Algorithms
Local Search RevisitedDefinitions

Neighborhood function

Neighborhood function N : Sπ → 2S

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

• neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}
• neighborhood size is |N(s)|
• neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)

• neighborhood graph of (S ,N, π) is a directed graph: GN := (V ,A) with V = S and
(uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood  undirected graph)
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Local Search Algorithms
Local Search Revisited

A neighborhood function is also defined by means of an operator (aka move).

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) =⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs from s ′ in at most k
solution components

Examples:

• 2-exchange neighborhood for TSP
(solution components = edges in given graph)
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Local Search Algorithms
Local Search RevisitedNeighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution
representations:
• Permutation

• linear permutation: Single Machine Total Weighted Tardiness Problem
• circular permutation: Traveling Salesman Problem

• Assignment: SAT, CSP
• Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′
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Local Search Algorithms
Local Search RevisitedPermutations

Sn indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
• πi is the element at position i

• posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Sn
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Local Search RevisitedLinear Permutations

Swap operator
∆S = {δiS | 1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX | 1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)
Insert operator

∆I = {δijI | 1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Local Search RevisitedCircular Permutations

Reversal (2-edge-exchange)
∆R = {δijR | 1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB | 1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB | 1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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Local Search RevisitedAssignments

An assignment can be represented as a mapping σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E | 1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E | 1 ≤ i < j ≤ n}

δij2E (σ) =
{
σ′ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl) ∀l 6= i , j
}
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Local Search RevisitedPartitioning

An assignment can be represented as a partition of objects selected and not selected
s : {X} → {C ,C} (it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C̄ ′ = C̄ \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C̄ ′ = C̄ ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C , u ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C̄ ′ = C̄ ∪ v \ u}
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Local Search RevisitedDefinitions

Definition:

• Local minimum: search position without improving neighbors wrt given evaluation function f
and neighborhood function N,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

• Strict local minimum: search position s ∈ S such that f (s) < f (s ′) for all s ′ ∈ N(s).

• Local maxima and strict local maxima: defined analogously.
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