
DM865 – Spring 2020

Heuristics and Approximation Algorithms

Satisfiability

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

2

SAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3

SAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3

Motivation

• SAT used to solve many other problems!

• Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design,
Routing, Combinatorial problems, Equivalence Checking, etc.

• From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

4

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas
There are other types of logic: first-order logic, temporal logic, etc.

The proposition symbols x1, x2, etc. are sentences

If x is a sentence, ¬x is a sentence (negation)
If x1 and x2 are sentences, x1 ∧ x2 is a sentence (conjunction)
If x1 and x2 are sentences, x1 ∨ x2 is a sentence (disjunction)
If x1 and x2 are sentences, x1 → x2 is a sentence (implication)
If x1 and x2 are sentences, x1 ↔ x2 is a sentence (biconditional)

5

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
E.g. x1 x2 x3

true true false
(With these symbols, 8 possible models, can be enumerated automatically.)

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬x1 ∧ (x2 ∨ x3) = true ∧ (false ∨ true)⇔ true ∧ true ⇔ true

Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P→Q P↔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

6

Logical equivalence

Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α→ β) ≡ (¬β → ¬α) contraposition
(α→ β) ≡ (¬α ∨ β) implication elimination
(α↔ β) ≡ ((α→ β) ∧ (β → α)) bicond. elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

7

Validity and Satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A→ A, (A ∧ (A→ B))→ B

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

8

Conjunctive Normal Form

Every sentence in Propositional Logic is logically equivalent to a conjunction of clauses:

• A formula is in conjunctive normal form (CNF) iff it is of the form

m∧
i=1

ki∨
j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm)

where each literal lij is a propositional variable or its negation.

The disjunctions of literlas: ci = (li1 ∨ . . . ∨ liki) are called clauses.

• A formula is in k-CNF iff it is in CNF and all clauses contain exactly k literals (i.e., for all i ,
ki = k).

• In many cases, the restriction of SAT to CNF formulae is considered.
• For every propositional formula, there is an equivalent formula in 3-CNF.

9

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

• F is in CNF.
• Is F satisfiable?

Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

10

Conversion to CNF

x1 ↔ (x2 ∨ x3)

1. Eliminate ↔, replacing α↔ β with (α→ β) ∧ (β → α).

(x1 → (x2 ∨ x3)) ∧ ((x2 ∨ x3)→ x1)

2. Eliminate →, replacing α→ β with ¬α ∨ β.

(¬x1 ∨ x2 ∨ x3) ∧ (¬(x2 ∨ x3) ∨ x1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬x1 ∨ x2 ∨ x3) ∧ ((¬x2 ∧ ¬x3) ∨ x1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x1)

11

SAT Problem

SAT Problem (decision problem, search variant):
• Given: Formula F in propositional logic
• Task: Find an assignment of truth values to variables in F that renders F true, or decide that

no such assignment exists.

SAT Problem: A simple instance
• Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

• Task: Find an assignment of truth values to variables x1, x2 that renders F true, or decide
that no such assignment exists.

13

Special Cases

Not all instances are hard:

• Definite clauses: exactly one literal in the clause is positive. Eg:

¬β ∨ ¬γ ∨ α

• Horn clauses: at most one literal is positive.

Easy interpretation: α ∧ β → γ infers that ¬α ∨ ¬β ∨ γ

Inference is easy by forward checking, linear time

15

Max SAT

Definition ((Maximum) K -Satisfiability (SAT))

Input: A set X of variables, a collection C of disjunctive clauses of at most k literals, where a
literal is a variable or a negated variable in X .
k is a constant, k > 2.
Task: A truth assignment for X or a truth assignment that maximizes the number of clauses
satisfied.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic formula F?

16

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

17

DPLL algorithm

Davis, Putam, Logenmann & Loveland (DPLL) algorithm is a recursive depth-first enumeration of
possible models with the following elements:

1 Early termination:
a clause is true if any of its literals are true
a formula is false if any of its clauses are false, which occurs when all its literals are false

2 Pure literal heuristic:
pure literal is one that appears with same sign everywhere.
it can be assigned so that it makes the clauses true. Clauses already true can be ignored.

3 Unit clause heuristic
consider first unit clauses with just one literal or all literal but one already assigned. Generates
cascade effect (forward chaining)

18

DPLL algorithm

Function DPLL(C , L,M):
Data: C set of clauses; L set of literals; M model;
Result: true or false
if every clause in C is true in M then return true;
if some clause in C is false in M then return false;
(l , val)←FindPureLiteral(L,C ,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
(l , val)←FindUnitClause(L,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
l ←First(L); R ←Rest(L);
return DPLL(C ,R,M ∪ {l = true}) or

DPLL(C ,R,M ∪ {l = false})

19

Speedups

• Component analysis to find separable
problems

• Intelligent backtracking
• Random restarts
• Clever indexing (data structures)
• Variable value ordering

20

Variable selection heuristics

• Degree

• Based on the occurrences in the (reduced) formula

• Maximal Occurrence in clauses of Minimal Size (MOMS, Jeroslow-Wang)

• Variable State Independent Decaying Sum (VSIDS)

• original idea (zChaff): for each conflict, increase the score of involved variables by 1, half all
scores each 256 conflicts [MoskewiczMZZM2001]

• improvement (MiniSAT): for each conflict, increase the score of involved variables by δ and
increase δ := 1.05δ [EenSörensson2003]

22

Value selection heuristics

• Based on the occurrences in the (reduced) formula

• examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads

23

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

24

Pre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of the problem instance.

Typically applied in cascade until no rule is effective anymore.

25

Examples in SAT

1 eliminate duplicate literals
2 eliminate tautologies: x1 ∨ ¬x1...

3 eliminate subsumed clauses
4 eliminate clauses with pure literals
5 eliminate unit clauses
6 unit propagation

26

Simple data structure for unit propagation

27

Maximum Weighted Satisfiability

Notation:

• 0-1 variables xj , j ∈ N = {1, 2, . . . , n},

• clauses Ci , i ∈ M = {1, 2, . . . ,m}, and weights wi (≥ 0), i ∈ M

• x̄j = 1− xj

• L =
⋃

j∈N{xj , x̄j} set of literals

• Ci ⊆ L for i ∈ M (e.g., Ci = {x1, x̄3, x8}).

• Task: maxx∈{0,1}n

∑
{wi | i ∈ M and Ci is satisfied in x}

1 design one or more construction heuristics for the problem
2 devise preprocessing rules, ie, polynomial time simplification rules
3 design one or more local search for the problem

28

Let’s take the case wi = 1 for all i ∈ M

• Assignment: x ∈ {0, 1}n

• Evaluation function: f (x) = # unsatisfied clauses
• Neighborhood: one-flip
• Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest Ci)
A better approach:
• C(xj) = {i ∈ M | xj ∈ Ci} (i.e., clauses dependent on xj)
• L(xj) = {` ∈ N | ∃i ∈ M with x` ∈ Ci and xj ∈ Ci}
• f (x) = # unsatisfied clauses
• ∆(xj) = f (x)− f (x′), x′ = δ

xj
1E (x) (aka score of xj)

Initialize:
• compute f , score of each variable, and list unsat clauses in O(mk)

• init C(xj) for all variables
Examine Neighborhood
• choose the var with best score

Update:
• change the score of variables affected, that is, look in C(·) O(mk)

C (xj) Data Structure

31

Even better approach (though same asymptotic complexity):
 after the flip of xj only the score of variables in L(xj) that critically depend on xj actually changes

• Clause Ci is critically satisfied by a variable xj in x iff:
• xj is in Ci

• Ci is satisfied in x and flipping xj makes Ci unsatisfied
(e.g., 1 ∨0 ∨ 0 but not 1 ∨1 ∨ 0)

Keep a list of such clauses for each var

• xj is critically dependent on x` under x iff:
there exists Ci ∈ C(xj) ∩ C(x`) and such that flipping xj :
• Ci changes from satisfied to not satisfied or viceversa
• Ci changes from satisfied to critically satisfied by x` or viceversa

Initialize:
• compute score of variables;
• init C(xj) for all variables
• init status criticality for each clause (ie, count # of ones per clause)

Update:
change sign to score of xj
for all Ci in C(xj) where critically dependent vars are do

for all x` ∈ Ci do
update score x` depending on its critical status before flipping xj

Summary

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

33

	SAT Problems
	Dedicated Backtracking
	Local Search for SAT

