DM865 - Spring 2020
Heuristics and Approximation Algorithms

Complexity

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Complexity Hierarchy

Outline

1. Complexity Hierarchy

Complexity Hierarchy

Reduction

A search problem Π^{\prime} is (polynomially) reducible to a search problem $\Pi\left(\Pi^{\prime} \longrightarrow \Pi\right)$ if there exists an algorithm \mathcal{A} that solves Π^{\prime} by using a hypothetical subroutine \mathcal{S} for Π and except for \mathcal{S} everything runs in polynomial time. [Garey and Johnson, 1979]

NP-hard
A search problem Π is NP-hard if

1. it is in NP
2. there exists some NP-complete problem Π^{\prime} that reduces to Π

In scheduling, complexity hierarchies describe relationships between different problems.

$$
\text { Ex: } 1\left\|\sum C_{j} \longrightarrow 1\right\| \sum w_{j} C_{j}
$$

Interest in characterizing the borderline: polynomial vs NP-hard problems

Problems Involving Numbers

Partition

- Input: finite set A and a size $s(a) \in \mathbf{Z}^{+}$for each $a \in A$
- Question: is there a subset $A^{\prime} \subseteq A$ such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A-A^{\prime}} s(a) ?
$$

3-Partition

- Input: set A of $3 m$ elements, a bound $B \in \mathbf{Z}^{+}$, and a size $s(a) \in \mathbf{Z}^{+}$for each $a \in A$ such that $B / 4<s(a)<B / 2$ and such that $\sum_{a \in A} s(a)=m B$
- Question: can A be partitioned into m disjoint sets A_{1}, \ldots, A_{m} such that for $1 \leq i \leq m$, $\sum_{a \in A_{i}} s(a)=B$ (note that each A_{i} must therefore contain exactly three elements from A)?

Complexity Hierarchy

Elementary reductions for machine environment

Complexity Hierarchy

Elementary reductions for regular objective functions

Polynomial time solvable problems

SINGLE MACHINE	PARALLEL MACHINES	SHOPS				
$\begin{aligned} & 1 \mid r_{j}, p_{j}=1, \text { prec } \mid \sum C_{j} \\ & 1 \mid r_{j}, \text { prmp } \mid \sum C_{j} \\ & 1 \mid \text { tree } \mid \sum w_{j} C_{j} \\ & 1 \mid \text { prec } \mid L_{\max } \\ & 1 \mid r_{j}, \text { prmp }, \text { prec } \mid L_{\max } \\ & 1\left\|\mid \sum U_{j}\right. \\ & 1 \mid r_{j}, \text { prmp } \mid \sum U_{j} \\ & 1\left\|r_{j}, p_{j}=1\right\| \sum w_{j} U_{j} \\ & 1\left\|r_{j}, p_{j}=1\right\| \sum w_{j} T_{j} \end{aligned}$	$P 2 \mid p_{j}=1$, prec $\mid L_{\text {max }}$ $P 2 \mid p_{j}=1$, prec $\mid \sum C_{j}$ $\operatorname{Pm} \mid p_{j}=1$, tree $\mid C_{\text {max }}$ Pm \| prmp, tree $\mid C_{\text {max }}$ Pm $\mid p_{j}=1$, outtree $\mid \sum C_{j}$ $\operatorname{Pm} \mid p_{j}=1$, intree $\mid L_{\max }$ Pm \mid prmp, intree $\mid L_{\max }$ Q2\| prmp, prec	$C_{\text {max }}$ $Q 2 \mid r_{j}$, prmp, prec $\mid L_{\text {max }}$ $Q m\left\|r_{j}, p_{j}=1\right\| C_{\max }$ $Q m\left\|p_{j}=1, M_{j}\right\| C_{\text {max }}$ $Q m\left\|r_{j}, p_{j}=1\right\| \sum C_{j}$ $Q m\|p r m p\| \sum C_{j}$ $Q m\left\|p_{j}=1\right\| \sum w_{j} C_{j}$ $Q m\left\|p_{j}=1\right\| L_{\max }$ $Q m\|p r m p\| \sum U_{j}$ $Q m\left\|p_{j}=1\right\| \sum w_{j} U_{j}$ $Q m\left\|p_{j}=1\right\| \sum w_{j} T_{j}$ $R m \\| \sum C_{j}$ $R m\left\|r_{j}, p r m p\right\| L_{\max }$	$\begin{aligned} & O 2 \\| C_{\max } \\ & O m \mid r_{j}, \text { prmp } \mid L_{\max } \\ & F 2 \mid \text { block } \mid C_{\max } \\ & F 2\|n w t\| C_{\max } \\ & F m\left\|p_{i j}=p_{j}\right\| \sum_{j} C_{j} \\ & F m\left\|p_{i j}=p_{j}\right\| L_{\max } \\ & F m\left\|p_{i j}=p_{j}\right\| \sum U_{j} \\ & J 2 \\| C_{\max } \end{aligned}$			

NP-hard problems in the ordinary sense

SINGLE MACHINE	PARALLEL MACHINES	SHOPS					
$\begin{aligned} & 1 \\| \sum w_{j} U_{j} \quad{ }^{(*)} \\ & 1\left\|r_{j}, \operatorname{prmp}\right\| \sum w_{j} U_{j} \\ & 1 \\| \sum T_{j} \quad{ }^{(*)} \end{aligned}$	$\begin{aligned} & P 2\left\|\mid C_{\max }\left(^{*}\right)\right. \\ & P 2\left\|r_{j}, \operatorname{prmp}\right\| \sum_{C^{*}} C_{j} \\ & P 2\left\|\mid \sum w_{j} C_{j}\right. \\ & P 2\left\|r_{j}, \operatorname{prmp}\right\| \sum U_{j} \\ & P m\|\operatorname{prmp}\| \sum w_{j} C_{j} \\ & Q m \\| \sum w_{j} C_{j} \quad\left(^{*}\right) \\ & R m\left\|r_{j}\right\| C_{\max } \quad\left(^{*}\right) \\ & R m \\| \sum w_{j} U_{j}\left(^{(*)}\right. \\ & R m\|p r m p\| \sum w_{j} U_{j} \end{aligned}$	$\begin{aligned} & O 2\|p r m p\| \sum C_{j} \\ & O 3 \\| C_{\max } \\ & O 3\|p r m p\| \sum w_{j} U_{j} \end{aligned}$					

Strongly NP-hard problems

SINGLE MACHINE	PARALLEL MACHINES	SHOPS							
$\begin{aligned} & 1\left\|s_{j k}\right\| C_{\max } \\ & 1\left\|r_{j}\right\| \sum C_{j} \\ & 1 \mid \text { prec } \mid \sum C_{j} \\ & 1 \mid r_{j}, \text { prmp,tree } \mid \sum C_{j} \\ & 1 \mid r_{j}, \text { prmp } \mid \sum w_{j} C_{j} \\ & 1 \mid r_{j}, p_{j}=1, \text { tree } \mid \sum w_{j} C_{j} \\ & 1 \mid p_{j}=1, \text { prec } \mid \sum w_{j} C_{j} \\ & 1\left\|r_{j}\right\| L_{\max } \\ & 1\left\|r_{j}\right\| \sum U_{j} \\ & 1 \mid p_{j}=1, \text { chains } \mid \sum U_{j} \\ & 1\left\|r_{j}\right\| \sum T_{j} \\ & 1 \mid p_{j}=1, \text { chains } \mid \sum T_{j} \\ & 1 \mid \sum w_{j} T_{j} \end{aligned}$	P2 \|chains $\mid C_{\text {max }}$ $P 2 \mid$ chains $\mid \sum C_{j}$ P2 \| prmp, chains	$\sum C_{j}$ $P 2 \mid p_{j}=1$, tree $\mid \sum w_{j} C_{j}$ $R 2 \mid$ prmp, chains $\mid C_{\text {max }}$	$F 2\left\|r_{j}\right\| C_{\text {max }}$ $F 2\left\|r_{j}, p r m p\right\| C_{\text {max }}$ $F 2 \\| \sum C_{j}$ F2\|prmp	$\sum C_{j}$ $F 2 \\| L_{\text {max }}$ F2 \| prmp $\mid L_{\text {max }}$ F3 \|	$C_{\text {max }}$ F3 \mid prmp $\mid C_{\text {max }}$ $F 3\|n w t\| C_{\text {max }}$ $O 2\left\|r_{j}\right\| C_{\text {max }}$ $O 2 \\| \sum C_{j}$ $O 2\left\|p^{2} m p\right\| \sum w_{j} C_{j}$ $O 2 \\| L_{\text {max }}$ $O 3\|p r m p\| \sum C_{j}$ $J 2 \mid$ rcrc $\mid C_{\text {max }}$ $J 3 \mid p_{i j}=1, \text { rcrc } \mid C_{\max }$				

Web Archive

Complexity results for scheduling problems by Peter Brucker and Sigrid Knust
http://www.informatik.uni-osnabrueck.de/knust/class/

