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Derivation and Motivation
Dual Problem Theory

Dual variables y in one-to-one correspondence with the constraints:

Primal problem: Dual Problem:
max z=c'x min w=b'y
Ax <b ATy >c
x>0 y>0



Derivation and Motivation

Bounding approach e

z¥ =max 4x; + xo + 3x3
X1 + 4xo <1
3X1 + X + X3 S 3
X1, X2, X3 20

a feasible solution is a lower bound but how good?
By tentatives:

(x1,%2,x3) = (1,0,0) ~ z* > 4
(x1,x2,x3) = (0,0,3) ~ z* > 9

What about upper bounds?
2-( x1 +4x ) <2-1

+3-(3X1+ Xo + X3) <3-3
4x1 +x0+3x3 < 1lxg +11lx +3x3 < 11

cx < y T Ax <y'b

Hence z* < 11. Is this the best upper bound we can find?



Derivation and Motivation
Theory

multipliers y1, y» > 0 that preserve sign of inequality
yi-(x1 +4x ) < n(1)
Yo ( 3X1 + X + X3) S y2(3)
(y1 +3y2)x1 + (4y1 + y2)x2 + yox3 < y1 + 3y

Coefficients

yi +3y >4
dyn+ yo 21
Y2 >3

z="4x3+ x4+ 3x3 < (y1 + 3y2)x1 + (4y1 + y2)x2 + yax3 < y1 + 3y» then to attain the best upper
bound:

min y; + 3y»
y1 +3y2 >4
4y1 + y2 > 1
y2 >3
y1,y2 >0



Derivation and Motivation

Multipliers Approach P

T ail 312 --- a1p!d1,n41 An42 - Amin 01Dy

Tm Aml @m2 - -+ dmn'dm,n+1 dm,n42 - - - am7m+n\0\bm

——————————— H—m ot e LT 2 T
Tmtl | 1 1 0 0 0 110
Working columnwise, since at optimum ¢, <0 forall k =1,....n+ m:

main +  meaxn ...+ Tmami + Tmiic < 0
_Ma . Mda ...t Tmdmn + Tmiicp < 0
T1a1,n+1, T232 041y -+-  Tmdm,n+l <0
M81ntm; __ T232n4ms - Tmdmantm <0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tme1 =1
71 by + o bo .+ Tmbm (< 0)

(since from the last row —z = —mb and we want to maximize z then we would

min(—z) = min(—7b) or equivalently maxmb)



max mib1 + mobs ...+ Tmbm

miail + maxr ... + Tmam <
T1d1n + M2a2n ... + Tmamn <
T, T2y e Tm <

max —yib1 + —y2b> ...+ —Ymbnm
—Yy1311 + —yeads1 ...+ —Ymam

—Yidin + —Yye2azp ... + —Ymamn
Y1, Y2, — Ym

min w=b'y
ATy >c
y>0

Derivation and Motivation
Theory
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Example

max 6x; + 8x»
5x1 + 10x> < 60
4X1 + 4X2 S 40
X1, X2 Z 0

571 + 4m 4+ 6m3 <0
107wy + 47 + 813 <0
1my + Omp + 03 <0
Omy 4+ 1m 4+ 0m3 <0
Oy + Omp +1m3 =1
607, + 40m,

yn=-m12>0
Yo=-—m >0

Derivation and Motivation
Theory



Derivation and Motivation

Duality Recipe Theory
' Primal linear program  Dual linear program )
Variables ' T1,29,. .., Ty Y1, Y25+ s Ym )
Matrix ' A AT )
Right-hand side ' b c )
Objective function ' max ¢’ x minbTy
Constraints ith constraint has < y; >0
= yi <0
= yi e R
x; >0 jth constraint has >
z; <0 <
r; € R =
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Symmetry

The dual of the dual is the primal:
Primal problem:

max z=c'x
Ax < b
x>0

Let's put the dual in the standard form

Dual problem:

min b’y = —max—b'y
—ATy < —c¢
y =20

Derivation and Motivation
Theory

Dual Problem:
min w=>b'y
ATy >c
y=>0

Dual of Dual:

—min —cx

—Ax

X

AV,
o
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. erivation and Motivation
Weak Duality Theorem Theoey o

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{c"x | Ax < b,x > 0}
(D) min{b7y | ATy > c,y > 0}

for any feasible solution x of (P) and any feasible solution 'y of (D):

c'x< bTy

Proof:
From

D) ¢ < >, viay ¥j and from (P) Y77 ayx; < b; Vi

(
From (D) y; > 0 and from (P) x; > 0

n n m m n
G < > | D oviag | x =D (D aixi
j=1 j= =1 [

j =1 i=1 \ j=1
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Derivation and Motivation

Strong Duality Theorem Thory

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

(P) max{c"x | Ax < b,x >0}
(D) min{b"y | ATy > c,y >0}

exactly one of the following occurs:
. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4

. (P) has feasible solution, then let an optimal be: x* = [x{',..., x}
(D) has feasible solution, then let an optimal be: y* = [y{,...,y}]

~

CTX* _ bTy*
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Proof:

Theory

e all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D)

are ruled out by weak duality theorem.

e we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas

Lemma and convex polyhedral analysis)

e The last row of the final tableau will give us

n+m n

m
z=27"+ E Cuxx = 2" + E GiXj + E Cn+iXn+i
k=1 =1 i=1

= z" + Cgxg + Cnuxn

In addition, z* = Y77, ¢ (¢, original values) because optimal value

J

— bTy*
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Derivation and Motivation
Theory

o Let's verify the claim:

We substitute in (¥): i) z = >°7 ;i ii) Copi = —y;5 and i) x,p; = by — 07, ajx; for

i=1,2,...,m (n+ i are the slack variables)
n n m n
D=2y G- v | bi— ) apx
=1 j=1 i=1 j=1
m n m
= (z* - Zy,—*b,-) + Z (EJ + Za,w,—*) Xj
i—1 j=1 i=1

This must hold for every (x1, x2, ..., x,) hence:
m
z* = Z by’ — y* satisfies c'x* = b y*
i=1

m
G=G+> ay . i=12....n
i=1
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Since ¢, <0 forevery k =1.2,....n+ m:
m
& <0~ G =D ¥iaj<0-
i=1
En+,' S 0~ _y,'* — *En+f Z 07

— y™* is also dual feasible solution

Derivation and Motivation

Theory
j=12....n
i=1,2 m
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Derivation and Motivation

Complementary Slackness Theorem Theery

Theorem (Complementary Slackness)

A feasible solution x* for (P)
A feasible solution y* for (D)
Necessary and sufficient conditions for optimality of both:

m
<Cj2y’.*aij> XJ*ZO? Jj=1....n
i=1

If x; # 0 then 5"y a; = ¢; (no surplus)
/ny,-*a,-j > G then xj* =0

Proof: In scalars
Zf=c'x* <y'Ax* <bTy* =w* - E
- - D (g=D yiay) x =0
. — P ~—
Hence from strong duality theorem: N SRS

<0
o' —y*Ax* =0 Hence each term must be =0



Proof in scalar form:

m
* * * P
X < Eauy,- xi J=12,
i=1

n
M apx |y <y i=12
j=1

Summing in j and in /:

n n m
e <3 (S ) -3
j=1 j=1 \i=1

i=1 \ j=

Derivation and Motivation
Theory

...,n from feasibility in D

,...,m from feasibility in P

m n

m
* * *
ajx; | yi < § biy;

1 i=1

For the strong duality theorem the left hand side is equal to the right hand side and hence all

inequalities become equalities.

n

m
Y= yiay) xf =0
j=1 i=1 \2'0"

<0
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Duality - Summary

e Derivation:

Economic interpretation

Bounding Approach

Multiplier Approach

Recipe

Lagrangian Multipliers Approach (next time)

e Theory:

Symmetry
Weak Duality Theorem
Strong Duality Theorem

Complementary Slackness Theorem

Theory
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