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Formulations

Uncapacited Facility Location (UFL) Relaxations

Given:
depots N = {1,...,n}
clients M = {1,...., m}

f; fixed cost to use depot j

e transport cost for all orders ¢;

1 if depot opened

Variables: y; = .
0 otherwise
Objective:
in 3" i+ 3
ieM jeN jen

Constraints:

n

D _xi =1
j=1
D% < my,

ieM

Task: Which depots to open and which depots serve
which client

x; fraction of demand of i satisfied by j
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Formulations

Good and Ideal Formulations Relaxations

Definition (Formulation)
A polyhedron P C R"*7 is a formulation for a set X C Z" x R if and only if X = PN (Z" x RP) J

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)
Given a set X C 7" the convex hull of X is defined as:

t t
conv(X) :{x:x:Z)\;x"7 Z)\;zl, Ai >0, fori=1,....,t,
i=1 i=1

for all finite subsets {x*,...,x'} of X}




Formulations
Relaxations

Proposition

conv(X) is a polyhedron (ie, representable as Ax < b)

Proposition

Extreme points of conv(X) all lie in X

Hence:
max{c"x : x € X} = max{c"x : x € conv(X)}

However it might require exponential number of inequalities to describe conv(X)
What makes a formulation better than another?

X Cconv(X)C Py C Py
P> is better than P;

Definition

Given a set X C R" and two formulations P; and P> for X, P, is a better formulation than P; if
P2 C Pl




Formulations
Relaxations

Example

P = UFL with >~ x; < my; VjeN
P, = UFL with x; <y; Vie MjeN

P, C P

e P, C Py because summing x;; < y; over i € M we obtain >, x; < my;

e P, C P; because there exists a point in P; but notin Po.: m=6=3-2=k-n

x10 = 1, xo0 = 1, x30 = 1, YoiXio <6yo yo=1/2
xa1=1,x1=1, x61 =1 Yoixi <6yr y1=1/2
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O u t I i ne Relaxations
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Formulations

Optimality and Relaxation Relaxations

z=max{c(x):xe X CZ"}

NI

How can we prove that x* is optimal?
Zzis UB

zis LB

stop when z — z < ¢

IN

e Primal bounds (here lower bounds): every feasible solution gives a primal bound
may be easy or hard to find, heuristics

e Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):
e If primal and dual bound have opposite signs, the gap is "Infinity".

e |If primal and dual bound have the same sign, the gap is
|pb — dbl

o decreases monotonously during the solving process.
min([pb, b))
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Proposition

(RP) zR = max{f(x) : x € T CR"} is a relaxation of
(IP)z = max{c(x):x e X CR"} if :

() XC T or

(ii) f(x) > c(x)Vx e X

Formulations
Relaxations

In other terms:

maxxe 7 ¢(X)
> >
mag 100 2 { 17 £ = et

e T: candidate solutions;
e X C T feasible solutions;
o f(x) > c(x)
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Formulations

Relaxat i ons Relaxations

How to construct relaxations?

1 IP:max{c"x:x€ PNZ"},P={x€R": Ax < b}
LP : max{c"x: x € P}
Better formulations give better bounds (P; C P>)

Proposition
(i) If a relaxation LP is infeasible, the original problem IP is infeasible.
(ii) Let x* be optimal solution for LP. If x* € X and f(x*) = c(x*) then x* is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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3. Lagrangian relaxation
P : z:max{ch:Ax§b7x€X§Z”}
LR : z(u) = max{c"x +u(b — Ax) : x € X}

zlu)>z Yu>0

4. Duality:
Definition
Two problems:
z =max{c(x) : x € X} w = min{w(u) : u € U}

form a weak-dual pair if c(x) < w(u) for all x € X and all u € U.
When z = w they form a strong-dual pair

Formulations
Relaxations
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Formulations
Relaxations

Proposition

z=max{c"x: Ax < b,x € Z"} and w'¥ = min{u’b: ATu > c,u e RT}
(e, dual of linear relaxation) form a weak-dual pair.

Proposition
Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible

(ii) Ifx* € X and u* € U satisfy c(x*) = w(u*) then x* is optimal for IP and u* is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound,
any feasible dual solution gives a bound.
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Formulations
Examples Relavations

Weak pairs:
Matching: z=max{1"x: Ax <1,x € ZT}
V. Covering: w=min{l7y: ATy >1ye 7"}

Proof: consider LP relaxations, then z < z° = wtP < w.
(strong when graphs are bipartite)

Weak pairs:
S. Packing: z=max{17x: Ax <1,x € Z"}
S. Covering: w=min{l7y: ATy >1ye Z7}
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