DM545/DM871 Linear and Integer Programming

Lecture Cutting Planes

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline Cutting Plane Algorithms

1. Cutting Plane Algorithms

Outline Cutting Plane Algorithms

1. Cutting Plane Algorithms

Valid Inequalities

- IP: $z = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in X\}, X = \{\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}$
- Proposition: $conv(X) = \{ \mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0 \}$ is a polyhedron
- LP: $z = \max\{\mathbf{c}^T\mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

 $ax \le b$ is a valid inequality for $X \subseteq \mathbb{R}^n$ if $ax \le b \ \forall x \in X$

Which are useful inequalities? and how can we find them? How can we use them?

Example: Pre-processing

• $X = \{(x, y) : x \le 999y; 0 \le x \le 5, y \in \mathbb{B}^1\}$

• $X = \{x \in \mathbb{Z}_+^n : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{13}{11}x_1 + \frac{20}{11}x_2 + x_3 + \frac{6}{11}x_4 \ge \frac{72}{11} = 6 + \frac{6}{11}$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

• Capacitated facility location:

$$\sum_{i \in M} x_{ij} \le b_j y_j \quad \forall j \in N$$

$$\sum_{j \in N} x_{ij} = a_i \quad \forall i \in M$$

$$x_{ij} \le a_i$$

$$x_{ij} \ge 0, \quad y_j \in B^n$$

$$x_{ij} \le \min\{a_i, b_j\} y_j$$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}^n_+$, $P = \{ \mathbf{x} \in \mathbb{R}^n_+ : A\mathbf{x} \leq \mathbf{b} \}$, $A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}^m_+$, $\{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$ columns of A

CG procedure to construct valid inequalities

1)
$$\sum_{j=1}^n \mathbf{u} \mathbf{a}_j x_j \leq \mathbf{u} \mathbf{b} \qquad \text{valid: } \mathbf{u} \geq \mathbf{0}$$

2)
$$\sum_{i=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{i} \rfloor x_{j} \leq \mathbf{u} \mathbf{b}$$
 valid: $\mathbf{x} \geq \mathbf{0}$ and $\sum \lfloor \mathbf{u} \mathbf{a}_{i} \rfloor x_{j} \leq \sum \mathbf{u} \mathbf{a}_{i} x_{j}$

3)
$$\sum_{i=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \lfloor \mathbf{u} \mathbf{b} \rfloor \qquad \text{valid for } X \text{ since } \mathbf{x} \in \mathbb{Z}^{n}$$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

However not all the constraints generated by $\mathbf{u} \in \mathbb{R}^m_+$ are tightenings.

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}_+^n$
- a family of valid inequalities $\mathcal{F}: \mathbf{a}^T \mathbf{x} \leq b, (\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

Init.:
$$t = 0, P^0 = P$$

Iter. t : Solve $\bar{z}^t = \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P^t\}$

let \mathbf{x}^t be an optimal solution

if $\mathbf{x}^t \in \mathbb{Z}^n$ stop, \mathbf{x}^t is opt to the IP

if $\mathbf{x}^t \notin \mathbb{Z}^n$ solve separation problem for \mathbf{x}^t and \mathcal{F}

if (\mathbf{a}^t, b^t) is found with $\mathbf{a}^t\mathbf{x}^t > b^t$ that cuts off x^t

$$P^{t+1} = P \cap \{\mathbf{x} : \mathbf{a}^i\mathbf{x} \leq b^i, i = 1, \dots, t\}$$

else stop (P^t is in any case an improved formulation)

Gomory's fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts

- $\max\{\mathbf{c}^T\mathbf{x}: A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^n\}$
- Solve LPR to optimality

$$\begin{bmatrix} I & \bar{A}_N = A_B^{-1} A_N & 0 & \bar{b} \\ -\bar{c}_B & \bar{c}_N (\leq 0) & 1 & -\bar{d} \end{bmatrix}$$

$$x_{B_u} = \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j, \quad u = 1..m$$

 $z = \bar{d} + \sum_{j \in N} \bar{c}_j x_j$

• If basic optimal solution to LPR is not integer then \exists some row u: $\bar{b}_u \notin \mathbb{Z}^1$. The Chvatál-Gomory cut applied to this row is:

$$x_{B_u} + \sum_{j \in N} \lfloor \bar{a}_{uj} \rfloor x_j \le \lfloor \bar{b}_u \rfloor$$

 $(B_u \text{ is the index in the basis } B \text{ corresponding to the row } u)$

(cntd)

• Eliminating $x_{B_u} = \bar{b}_u - \sum_{i \in N} \bar{a}_{uj} x_j$ in the CG cut we obtain:

$$\sum_{j \in N} (\underline{\bar{a}_{uj} - \lfloor \bar{a}_{uj} \rfloor}) x_j \ge \underbrace{\bar{b}_u - \lfloor \bar{b}_u \rfloor}_{0 < f_u < 1}$$

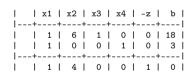
$$\sum_{j\in N} f_{uj} x_j \ge f_u$$

 $f_u > 0$ or else u would not be row of fractional solution. It implies that x^* in which $x_N^* = 0$ is cut out!

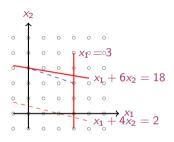
(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

$$\max x_1 + 4x_2$$
 $x_1 + 6x_2 \le 18$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$
 x_1, x_2 integer



												b	
i	-	0	1	1	I	1/6	1	-1/6	I	0	I	15/6	i
i	-+-		-+-		+.		-+-		-+-		+-		İ
- 1		0	- 1	0	П	-2/3	- 1	-1/3	- 1	1	-	-13	П



$$x_2 = 5/2, x_1 = 3$$

Optimum, not integer

- We take the first row: | | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
- CG cut $\sum_{j \in N} f_{uj} x_j \ge f_u \leadsto \frac{1}{6} x_3 + \frac{5}{6} x_4 \ge \frac{1}{2}$
- Let's see that it leaves out x*: from the CG proof:

$$\frac{1/6 (x_1 + 6x_2 \le 18)}{5/6 (x_1 \le 3)}$$
$$\frac{x_1 + x_2 \le 3 + 5/2 = 5.5}$$

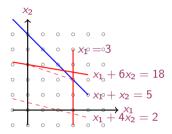
since x_1, x_2 are integer $x_1 + x_2 \le 5$

• Let's see how it looks in the space of the original variables: from the first tableau:

$$x_3 = 18 - 6x_2 - x_1$$
$$x_4 = 3 - x_1$$

$$\frac{1}{6}(18 - 6x_2 - x_1) + \frac{5}{6}(3 - x_1) \ge \frac{1}{2} \qquad \rightsquigarrow \qquad x_1 + x_2 \le 5$$

• Graphically:



• Let's continue:

															b	
++													- [
	1	1	0	1	0		-1/6	1	-5/6		1	1	0	1	-1/2	1
	1	1	0	1	1	1	1/6	1	-1/6	1	0	1	0	1	5/2	1
	1	1	1	1	0		0	1	1		0		0	1	3	1
++													- [
	1	1	0	1	0	1	-2/3	1	-1/3	1	0	1	1	1	-13	1

We need to apply dual-simplex (will always be the case, why?)

ratio rule: $\min\{|\frac{c_j}{a_{ij}}|: a_{ij} < 0\}$

• After the dual simplex iteration:

1	-	x1	1	x2	1	x3	1	x4	١	x5	1	-z	١	b	1
+															
1	-	0	1	0	1	1/5	1	1	1	-6/5	1	0	1	3/5	1
1	-	0	1	1	1	1/5		0	1	-1/5	1	0	1	13/5	1
1	-	1	1	0	1	-1/5		0	1	6/5	1	0	1	12/5	1
++															
1	- 1	0	1	0	1	-3/5	1	0	1	-2/5	1	1	1	-64/5	1

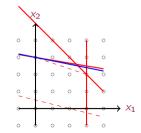
• In the space of the original variables:

$$4(18 - x_1 - 6x_2) + (5 - x_1 - x_2) \ge 2$$
$$x_1 + 5x_2 \le 15$$

We can choose any of the three rows.

Let's take the third: CG cut:

$$\frac{4}{5}x_3 + \frac{1}{5}x_5 \ge \frac{2}{5}$$



• ...