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Cutting Plane AlgorithmsValid Inequalities

• IP: z = max{cTx : x ∈ X},X = {x : Ax ≤ b, x ∈ Zn
+}

• Proposition: conv(X ) = {x : Ãx ≤ b̃, x ≥ 0} is a polyhedron

• LP: z = max{cTx : Ãx ≤ b̃, x ≥ 0} would be the best formulation

• Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

ax ≤ b is a valid inequality for X ⊆ Rn if ax ≤ b ∀x ∈ X

Which are useful inequalities? and how can we find them?
How can we use them?
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Cutting Plane AlgorithmsExample: Pre-processing

• X = {(x , y) : x ≤ 999y ; 0 ≤ x ≤ 5, y ∈ B1}

x ≤ 5y

• X = {x ∈ Zn
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

2x1 + 2x2 + x3 + x4 ≥
13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11

= 6 +
6
11

2x1 + 2x2 + x3 + x4 ≥ 7

• Capacitated facility location:∑
i∈M

xij ≤ bjyj ∀j ∈ N xij ≤ bjyj∑
j∈N

xij = ai ∀i ∈ M xij ≤ ai

xij ≥ 0, yj ∈ Bn xij ≤ min{ai , bj}yj
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Cutting Plane AlgorithmsChvátal-Gomory cuts

• X ∈ P ∩ Zn
+, P = {x ∈ Rn

+ : Ax ≤ b}, A ∈ Rm×n

• u ∈ Rm
+, {a1, a2, . . . an} columns of A

CG procedure to construct valid inequalities

1)
n∑

j=1

uajxj ≤ ub valid: u ≥ 0

2)
n∑

j=1

buajcxj ≤ ub valid: x ≥ 0 and
∑
buajcxj ≤

∑
uajxj

3)
n∑

j=1

buajcxj ≤ bubc valid for X since x ∈ Zn

Theorem
by applying this CG procedure a finite number of times every valid inequality for X can be obtained

However not all the constraints generated by u ∈ Rm
+ are tightenings.

6



Cutting Plane AlgorithmsCutting Plane Algorithms

• X ∈ P ∩ Zn
+

• a family of valid inequalities F : aTx ≤ b, (a, b) ∈ F for X

• we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm
Init.: t = 0,P0 = P

Iter. t: Solve z̄ t = max{cTx : x ∈ P t}
let xt be an optimal solution
if xt ∈ Zn stop, xt is opt to the IP
if xt 6∈ Zn solve separation problem for xt and F
if (at , bt) is found with atxt > bt that cuts off x t

P t+1 = P ∩ {x : aix ≤ bi , i = 1, . . . , t}

else stop (P t is in any case an improved formulation)
7



Cutting Plane AlgorithmsGomory’s fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts
• max{cTx : Ax = b, x ≥ 0, x ∈ Zn}
• Solve LPR to optimality I ĀN = A−1

B AN 0 b̄

c̄B c̄N(≤ 0) 1 −d̄


xBu = b̄u −

∑
j∈N

āujxj , u = 1..m

z = d̄ +
∑
j∈N

c̄jxj

• If basic optimal solution to LPR is not integer then ∃ some row u: b̄u 6∈ Z1.
The Chvatál-Gomory cut applied to this row is:

xBu +
∑
j∈N

bāujcxj ≤ bb̄uc

(Bu is the index in the basis B corresponding to the row u) (cntd)
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Cutting Plane Algorithms

• Eliminating xBu = b̄u −
∑
j∈N

āujxj in the CG cut we obtain:

∑
j∈N

(āuj − bāujc︸ ︷︷ ︸
0≤fuj<1

)xj ≥ b̄u − bb̄uc︸ ︷︷ ︸
0<fu<1∑

j∈N

fujxj ≥ fu

fu > 0 or else u would not be row of fractional solution. It implies that x∗ in which x∗N = 0 is
cut out!

(theoretically it terminates after a finite number of iterations, but in practice not successful.)
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Cutting Plane AlgorithmsExample

max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2integer x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1

x2

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+----|
| | 1 | 6 | 1 | 0 | 0 | 18 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+----+----+----+----|
| | 1 | 4 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+------+------+----+------|
| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+------+------+----+------|
| | 0 | 0 | -2/3 | -1/3 | 1 | -13 |

x2 = 5/2, x1 = 3
Optimum, not integer 10



Cutting Plane Algorithms

• We take the first row: | | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |

• CG cut
∑

j∈N fujxj ≥ fu  1
6x3 + 5

6x4 ≥ 1
2

• Let’s see that it leaves out x∗: from the CG proof:

1/6 (x1 + 6x2 ≤ 18)
5/6 (x1 ≤ 3)

x1 + x2 ≤ 3 + 5/2 = 5.5

since x1, x2 are integer x1 + x2 ≤ 5

• Let’s see how it looks in the space of the original variables: from the first tableau:

x3 = 18− 6x2 − x1
x4 = 3− x1

1
6

(18− 6x2 − x1) +
5
6

(3− x1) ≥ 1
2

 x1 + x2 ≤ 5
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Cutting Plane Algorithms

• Graphically:

x1 + 4x2 = 2

x1 + x2 = 5

x1 + 6x2 = 18

x1 = 3

x1

x2

• Let’s continue:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -1/6 | -5/6 | 1 | 0 | -1/2 |
| | 0 | 1 | 1/6 | -1/6 | 0 | 0 | 5/2 |
| | 1 | 0 | 0 | 1 | 0 | 0 | 3 |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -2/3 | -1/3 | 0 | 1 | -13 |

We need to apply dual-simplex
(will always be the case, why?)

ratio rule: min{| cj
aij
| : aij < 0}
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Cutting Plane Algorithms

• After the dual simplex iteration:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | 1/5 | 1 | -6/5 | 0 | 3/5 |
| | 0 | 1 | 1/5 | 0 | -1/5 | 0 | 13/5 |
| | 1 | 0 | -1/5 | 0 | 6/5 | 0 | 12/5 |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | -3/5 | 0 | -2/5 | 1 | -64/5 |

We can choose any of the three rows.

Let’s take the third: CG cut:
4
5x3 +

1
5x5 ≥ 2

5

• In the space of the original variables:

4(18− x1 − 6x2) + (5− x1 − x2) ≥ 2
x1 + 5x2 ≤ 15

x1

x2

• ...
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