DM545/DM871 Linear and Integer Programming

Lecture 13 Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline Branch and Bound

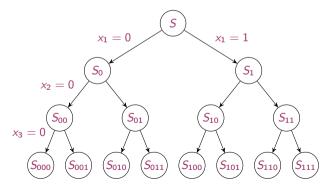
1. Branch and Bound

Outline Branch and Bound

1. Branch and Bound

- Consider the problem $z = \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in S\}$
- Divide and conquer: let $S = S_1 \cup ... \cup S_k$ be a decomposition of S into smaller sets, and let $z^k = \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in S_k\}$ for k = 1, ..., K. Then $z = \max_k z^k$

For instance if $S \subseteq \{0,1\}^3$ the enumeration tree is:

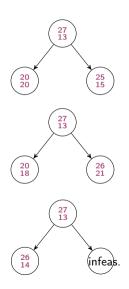


Bounding

Let's consider a maximization problem

- Let \overline{z}^k be an upper bound on z^k (dual bound)
- Let \underline{z}^k be a lower bound on z^k (primal bound)
- $(\underline{z}^k \leq z^k \leq \overline{z}^k)$
- $\underline{z} = \max_k \underline{z}^k$ is a lower bound on z
- $\overline{z} = \max_k \overline{z}^k$ is an upper bound on z

Pruning

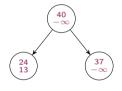


 $\overline{z} = 25$ $\underline{z} = 20$ pruned by optimality

 $\overline{z} = 26$ $\underline{z} = 21$ pruned by bounding

 $\overline{z}=26$ $\underline{z}=14$ pruned by infeasibility

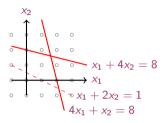
Pruning



 $\overline{z} = 37$ $\underline{z} = 13$ nothing to prune

Example

$$\begin{array}{ll} \max \;\; x_1 \;\; + \; 2x_2 \\ x_1 \;\; + \; 4x_2 \leq 8 \\ 4x_1 + \;\; x_2 \leq 8 \\ x_1, x_2 \geq 0, \mathsf{integer} \end{array}$$



• Solve LP

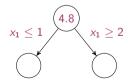
continuing

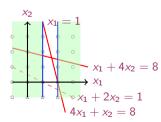
 						x3							 -
I'=4/15I II'=II-1/4I'	 -	0 1	 	1 0	 	4/15 -1/15		-1/15 4/15	 	0	 	24/15 24/15	i I
 III'=III-7/4I'													•

$$x_2 = 1 + 3/5 = 1.6$$

 $x_1 = 8/5$
The optimal solution will not be more than $2 + 14/5 = 4.8$

• Both variables are fractional, we pick one of the two:





• Let's consider first the left branch:



I'=I-III 0 0 1/15 -4/15 1 0 -9/15 0 1 4/15 -1/15 0 0 24/15 1 0 -1/15 4/15 0 0 24/15 																•
	I'=I-III	١	0	1	0	١	1/15	١	-4/15	١	1	1	0	1	-9/15	l
·	•															•
	•															•

!			•						•		•				
	-+		-+-		-+-		-+-		+-		-+		-+-		1
I'=-15/4I		0	-	0	-	-1/4	-	1		-15/4		0	1	9/4	
II'=II-1/4I	-	0	1	1	1	15/60		0	1	-1/4	1	0	1	7/4	1
III;=III+I	1	1	1	0	1	0		0	1	1	1	0	1	1	1
	-+		+		+		-+-		+-		+		+-		1
1	ī	0	Ι	0	Τ	-37/60	Τ	0	Τ	-9/4	1	1	Ι	-90/20	Τ

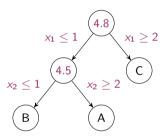
always a *b* term negative after branching:

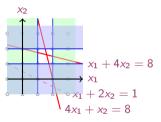
$$b_1 = \lfloor \bar{b}_3 \rfloor \bar{b}_1 = \lfloor \bar{b}_3 \rfloor - b_3 < 0$$

Dual simplex:

$$\min_{j}\{\left|\frac{c_{j}}{a_{ij}}\right|: a_{ij}<0\}$$

• Let's branch again





We have three open problems. Which one we choose next? Let's take A.

x1 x2 x3 x4 x5 x6 b -z
++
0 -1 0 0 0 1 0 -2
0 0 -1/4 1 -15/4 0 9/4
0 1 15/60 0 -1/4 0 7/4
+++
0 0 -37/60 0 -9/4 1 -9/2
x1 x2 x3 x4 x5 x6 b -z
x1 x2 x3 x4 x5 x6 b -z
+++
++
+++

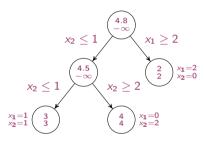
continuing we find:

$$x_1 = 0$$

$$x_2 = 2$$

$$OPT = 4$$

The final tree:

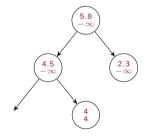


The optimal solution is 4.

Pruning

Pruning:

- 1. by optimality: $z^k = \max\{c^T x : x \in S^k\}$
- 2. by bound $\overline{z}^k \leq \underline{z}$ Example:



3. by infeasibility $S^k = \emptyset$

B&B Components

Bounding:

- 1. LP relaxation
- 2. Lagrangian relaxation
- 3. Combinatorial relaxation
- 4. Duality

Branching:

$$S_1 = S \cap \{x : x_j \le \lfloor \bar{x}_j \rfloor\}$$

$$S_2 = S \cap \{x : x_j \ge \lceil \bar{x}_j \rceil\}$$

thus the current optimum is not feasible either in S_1 or in S_2 .

Which variable to choose?

Eg: Most fractional variable $\arg \max_{j \in C} \min\{f_j, 1 - f_j\}$

Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: $\overline{z}^s = \max_k \overline{z}^k$ or largest lower to die fast)
- Mixed strategies

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

$$\underline{z} = \max\{\underline{z}, 4\}$$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds redundant constraints variable fixing: eg: max{c^Tx : Ax ≤ b, l ≤ x ≤ u} fix x_j = l_j if c_j < 0 and a_{ij} > 0 for all i fix x_j = u_j if c_j > 0 and a_{ij} < 0 for all i
- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

$$\begin{split} \sum_{j=1} x_j &= 1 \qquad x_j \in \{0,1\} \\ \text{instead of: } S_0 &= S \cap \{\mathbf{x}: x_j = 0\} \text{ and } S_1 = S \cap \{\mathbf{x}: x_j = 1\} \\ &\quad \{\mathbf{x}: x_j = 0\} \text{ leaves } k - 1 \text{ possibilities} \\ &\quad \{\mathbf{x}: x_j = 1\} \text{ leaves only } 1 \text{ possibility} \\ &\quad \text{hence tree unbalanced} \\ \text{here: } S_1 &= S \cap \{\mathbf{x}: x_{j_i} = 0, i = 1..r\} \text{ and } S_2 = S \cap \{\mathbf{x}: x_{j_i} = 0, i = r+1, .., k\}, \\ r &= \min\{t: \sum_{i=1}^t x_{j_i}^* \geq \frac{1}{2}\} \end{split}$$

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:
 - 1. choose a set C of fractional variables
 - 2. reoptimize for each of them (in case for limited iterations)
 - 3. $\overline{z}_{j}^{\downarrow}, \overline{z}_{j}^{\uparrow}$ (dual bound of down and up branch)

$$j^* = \arg\min_{j \in C} \max\{\overline{z}_j^{\downarrow}, \overline{z}_j^{\uparrow}\}$$

ie, choose variable with largest decrease of dual bound, eg UB for max

There are four common reasons because integer programs can require a significant amount of solution time:

- 1. There is lack of node throughput due to troublesome linear programming node solves.
- 2. There is lack of progress in the best integer solution, i.e., the primal bound.
- 3. There is lack of progress in the best dual bound.
- 4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.
- For 2) or 3) the gap best feasible-dual bound is large:

$$\mathsf{gap} = \frac{|\mathsf{Primal\ bound} - \mathsf{Dual\ bound}|}{\mathsf{Primal\ bound} + \epsilon} \cdot 100$$

- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally

Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Relative Optimality Gap

In CPLEX:

$$\mathsf{gap} = \frac{|\mathsf{best} \ \mathsf{dual} \ \mathsf{bound} - \mathsf{best} \ \mathsf{integer}|}{|\mathsf{best} \ \mathsf{integer} + 10^{-11}|}$$

In SCIP and MIPLIB standard:

$${\sf gap} = rac{pb-db}{{\sf inf}\{|z|,z\in[db,pb]\}} \cdot 100$$
 for a minimization problem

(if
$$pb \geq 0$$
 and $db \geq 0$ then $\frac{pb-db}{db}$) if $db = pb = 0$ then gap $= 0$ if no feasible sol found or $db \leq 0 \leq pb$ then the gap is not computed.

Last standard avoids problem of non decreasing gap if we go through zero

3186	2520	-666.6217	4096	956.6330	-667.2010	1313338	169.74%
3226	2560	-666.6205	4097	956.6330	-667.2010	1323797	169.74%
3266	2600	-666.6201	4095	956.6330	-667.2010	1335602	169.74%
Elapsed	real time	= 2801.61	sec. (tree	size = 77.54	MB, solution	ons = 2)	
* 3324+	- 2656			-125.5775	-667.2010	1363079	431.31%
3334	2668	-666.5811	4052	-125.5775	-667.2010	1370748	431.31%
3380	2714	-666.5799	4017	-125.5775	-667.2010	1388391	431.31%
3422	2756	-666.5791	4011	-125.5775	-667.2010	1403440	431.31%

Advanced Techniques

We did not treat:

- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

Summary

1. Branch and Bound