### DM545/DM871 Linear and Integer Programming

### Lecture 11 Network Flows

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

### Outline

Well Solved Problems Network Flows Assignment and Transportation

1. Well Solved Problems

2. (Minimum Cost) Network Flows

 ${\it 3. Assignment and Transportation}\\$ 

### Outline

Well Solved Problems Network Flows Assignment and Transportation

1. Well Solved Problems

2. (Minimum Cost) Network Flows

3. Assignment and Transportation

### Separation problem

$$\max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in X\} \equiv \max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in \mathsf{conv}(X)\}\$$
  $X\subseteq \mathbb{Z}^n$ ,  $P$  a polyhedron  $P\subseteq \mathbb{R}^n$  and  $X=P\cap \mathbb{Z}^n$ 

#### Definition (Separation problem for a COP)

Given  $\mathbf{x}^* \in P$ ; is  $\mathbf{x}^* \in \text{conv}(X)$ ? If not find an inequality  $\mathbf{ax} \leq \mathbf{b}$  satisfied by all points in X but violated by the point  $\mathbf{x}^*$ .

(Farkas' lemma states the existence of such an inequality.)

#### Network Flows Assignment and Transportation

#### Four properties that often go together:

#### Definition

- (i) Efficient optimization property:  $\exists$  a polynomial algorithm for  $\max\{\mathbf{cx}:\mathbf{x}\in X\subseteq\mathbb{R}^n\}$
- (ii) Strong duality property:  $\exists$  strong dual D min $\{w(\mathbf{u}) : \mathbf{u} \in U\}$  that allows to quickly verify optimality
- (iii) Efficient separation problem: ∃ efficient algorithm for separation problem
- (iv) Efficient convex hull property: a compact description of the convex hull is available

#### Example:

If explicit convex hull strong duality holds efficient separation property (just description of conv(X))

#### Well Solved Problems

Network Flows Assignment and Transportation

#### Theoretical analysis to prove results about

- strength of certain inequalities that are facet defining 2 ways
- descriptions of convex hull of some discrete X ⊆ Z\* several ways, we see one next

#### Example

Let

$$X = \{(x, y) \in \mathbb{R}_+^m \times \mathbb{B}^1 : \sum_{i=1}^m x_i \le my, x_i \le 1 \text{ for } i = 1, \dots, m\}$$

$$P = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^1 : x_i \le y \text{ for } i = 1, \dots, m, y \le 1\}$$

.

Polyhedron P describes conv(X)

### **Totally Unimodular Matrices**

#### When the LP solution to this problem

$$IP: \max\{\mathbf{c}^T\mathbf{x}: A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}$$

with all data integer will have integer solution?

$$\begin{bmatrix} A_N & A_B & \mathbf{0} & \mathbf{b} \\ \mathbf{c}_N^T & \mathbf{c}_B^T & 1 & 0 \end{bmatrix}$$

$$A_B x_B + A_N x_N = b$$
  
 $\mathbf{x}_N = \mathbf{0} \leadsto A_B \mathbf{x}_B = \mathbf{b},$   
 $A_B \ m \times m$  non singular matrix  
 $\mathbf{x}_B \ge 0$ 

Cramer's rule for solving systems of linear equations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix}$$

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$$y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$$\mathbf{x} = A_B^{-1} \mathbf{b} = \frac{A_B^{adj} \mathbf{b}}{\det(A_B)}$$

#### **Definition**

- A square integer matrix B is called unimodular (UM) if  $det(B) = \pm 1$
- An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix
  of A is UM

#### Proposition

- If A is TUM then all vertices of  $R_1(A) = \{x : Ax = b, x \ge 0\}$  are integer if b is integer
- If A is TUM then all vertices of  $R_2(A) = \{x : Ax \le b, x \ge 0\}$  are integer if b is integer.

Proof: if A is TUM then  $\begin{bmatrix} A \\ I \end{bmatrix}$  is TUM

Any square, nonsingular submatrix  ${\it C}$  of  $\left[ {\it A} | {\it I} \right]$  can be written as

$$C = \begin{bmatrix} B & 0 \\ -\overline{D} & \overline{I_k} \end{bmatrix}$$

where B is square submatrix of A. Hence  $det(C) = det(B) = \pm 1$ 

#### Proposition

The transpose matrix  $A^T$  of a TUM matrix A is also TUM.

### Theorem (Sufficient condition)

An integer matrix A is TUM if

- 1.  $a_{ii} \in \{0, -1, +1\}$  for all i, j
- 2. each column contains at most two non-zero coefficients  $(\sum_{i=1}^{m} |a_{ij}| \le 2)$
- 3. if the rows can be partitioned into two sets  $l_1$ ,  $l_2$  such that:
  - if a column has 2 entries of same sign, their rows are in different sets
  - if a column has 2 entries of different signs, their rows are in the same set

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Proof: by induction

Basis: one matrix of one element  $\{0, +1, -1\}$  is TUM

Induction: let C be of size k.

If C has column with all 0s then it is singular.

If a column with only one 1 then expand on that by induction

If 2 non-zero in each column then

$$\forall j: \sum_{i\in I_1} a_{ij} = \sum_{i\in I_2} a_{ij}$$

but then a linear combination of rows is zero and det(C) = 0

#### Other matrices with integrality property:

- TUM
- Balanced matrices
- Perfect matrices
- Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

#### Proposition

A is always TUM if it comes from

- node-edge incidence matrix of undirected bipartite graphs (ie, no odd cycles)  $(I_1 = U, I_2 = V, B = (U, V, E))$
- node-arc incidence matrix of directed graphs  $(l_2 = \emptyset)$

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching

### **Summary**

Well Solved Problems
Network Flows
Assignment and Transportation

1. Well Solved Problems

2. (Minimum Cost) Network Flows

 ${\it 3. Assignment and Transportation}\\$ 

# Well Solved Problems Network Flows Assignment and Transportation

### Outline

1. Well Solved Problems

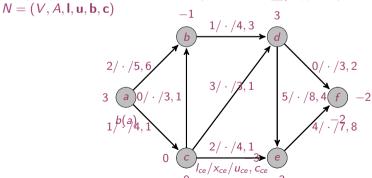
2. (Minimum Cost) Network Flows

3. Assignment and Transportation

### **Terminology**

Network: • directed graph D = (V, A)

- arc, directed link, from tail to head
- lower bound  $l_{ii} > 0$ ,  $\forall ij \in A$ , capacity  $u_{ii} \geq l_{ii}$ ,  $\forall ij \in A$
- cost  $c_{ij}$ , linear variation (if  $ij \notin A$  then  $l_{ij} = u_{ij} = 0, c_{ij} = 0$ )
- balance vector b(i), b(i) > 0 supply node (source), b(i) < 0 demand node (sink, tank), b(i) = 0 transhipment node (assumption  $\sum_i b(i) = 0$ )



### **Network Flows**

Flow 
$$\mathbf{x}: A \to \mathbb{R}$$
 balance vector of  $\mathbf{x}$ :  $b_{\mathbf{x}}(v) = \sum_{vu \in A} x_{vu} - \sum_{wv \in A} x_{wv}$ ,  $\forall v \in V$ 

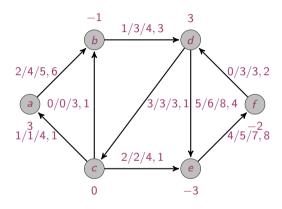
$$b_{x}(v) \begin{cases} > 0 & \text{source} \\ < 0 & \text{sink/target/tank} \\ = 0 & \text{balanced} \end{cases}$$

(generalizes the concept of path with  $b_x(v) = \{0, 1, -1\}$ )

$$\begin{array}{ll} \text{feasible} & \textit{l}_{ij} \leq \textit{x}_{ij} \leq \textit{u}_{ij}, \; \textit{b}_{\mathbf{x}}(i) = \textit{b}(i) \\ \text{cost} & \mathbf{c}^{T}\mathbf{x} = \sum_{ij \in \mathcal{A}} \textit{c}_{ij} \textit{x}_{ij} \; \text{(varies linearly with } \mathbf{x} \text{)} \\ \end{array}$$

If iji is a 2-cycle and all  $l_{ij} = 0$ , then at least one of  $x_{ij}$  and  $x_{ji}$  is zero.

### Example



Feasible flow of cost 109

### Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes.

#### Variables:

$$x_{ij} \in \mathbb{R}_0^+$$

### Objective:

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

Constraints: mass balance + flow bounds

$$\sum_{j:ij\in A} x_{ij} - \sum_{j:ji\in A} x_{ji} = b(i) \quad \forall i \in V$$

$$I_{ij} \leq x_{ij} \leq u_{ij}$$

N node arc incidence matrix

(assumption: all values are integer, we can multiply if rational)

|       | $X_{e_1}$ | $X_{e_2}$ | <br>$x_{ij}$ | <br>$X_{e_m}$ |        |                 |
|-------|-----------|-----------|--------------|---------------|--------|-----------------|
|       | $C_{e_1}$ | $C_{e_2}$ | <br>$c_{ij}$ | <br>$C_{e_m}$ |        |                 |
| 1     | 1         |           |              | <br>          | =      | $b_1$           |
| 2     |           |           |              |               | =      | $b_2$           |
|       | :         | 100       |              |               | =      | :               |
| i     | -1        |           | <br>1        |               | =      | $b_i$           |
| :     |           | 1.        |              |               | =      | :               |
| j     |           |           | <br>-1       |               | =      | $b_j$           |
| :     |           | 100       |              |               | =      | :               |
| n     |           |           |              |               | =      | $b_n$           |
| $e_1$ | 1         |           |              | <br>          | $\leq$ | $u_1$           |
| $e_2$ | l<br>I    | 1         |              |               | ≤<br>≤ | <i>U</i> 2      |
| :     | :         | 100       |              |               | <      | :               |
| (i,j) |           |           | 1            |               | ≤<br>≤ | u <sub>ij</sub> |
| :     | :         | 100       |              |               | $\leq$ | ÷               |
| $e_m$ |           |           |              | 1             | ≤<br>≤ | $u_m$           |

### Reductions/Transformations

#### Lower bounds

Let 
$$N = (V, A, I, \mathbf{u}, \mathbf{b}, \mathbf{c})$$

$$b(i) l_{ij} > 0 b(j)$$

$$i j$$

$$\mathbf{c}^T\mathbf{x}$$

$$N' = (V, A, I', u', b', c)$$
  
 $b'(i) = b(i) - I_{ij}$   
 $b'(j) = b(j) + I_{ij}$   
 $u'_{ij} = u_{ij} - I_{ij}$   
 $I'_{ii} = 0$ 

$$b(i) - l_{ij} \quad l_{ij} = 0 \quad b(j) + l_{ij}$$

$$i \quad u_{ij} - l_{ij} \quad j$$

$$\mathbf{c}^{\mathsf{T}}\mathbf{x}' + \sum_{ij \in A} c_{ij} I_{ij}$$

Well Solved Problems Network Flows Assignment and Transportation

#### **Undirected arcs**

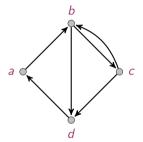


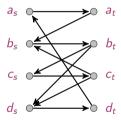


#### Vertex splitting

If there are bounds and costs of flow passing through vertices where b(v) = 0 (used to ensure that a node is visited):

$$N = (V, A, \mathbf{I}, \mathbf{u}, \mathbf{c}, \mathbf{I}^*, \mathbf{u}^*, \mathbf{c}^*)$$

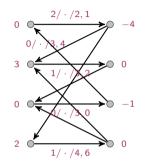




From D to  $D_{ST}$  as follows:

$$\forall v \in V \quad \rightsquigarrow v_s, v_t \in V(D_{ST}) \text{ and } v_s v_t \in A(D_{ST})$$
  
 $\forall xy \in A(D) \rightsquigarrow x_t y_s \in A(D_{ST})$ 



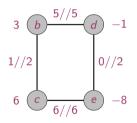


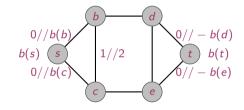
$$\forall v \in V \text{ and } v_s v_t \in A_{ST} \rightsquigarrow h'(v_s v_t) = h^*(v), \quad h^* \in \{l^*, u^*, c^*\}$$
 
$$\forall xy \in A \text{ and } x_t y_s \in A_{ST} \rightsquigarrow h'(x_t y_s) = h(x, y), \ h \in \{l, u, c\}$$

If 
$$b(v) = 0$$
, then  $b'(v_s) = b'(v_t) = 0$   
If  $b(v) < 0$ , then  $b'(v_s) = 0$  and  $b'(v_t) = b(v)$   
If  $b(v) > 0$ , then  $b'(v_s) = b(v)$  and  $b'(v_t) = 0$ 

### (s, t)-flow:

$$b_{x}(v) = \begin{cases} k & \text{if } v = s \\ -k & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} \quad |\mathbf{x}| = |b_{x}(s)|$$





$$b(s) = \sum_{v:b(v)>0} b(v) = M$$
  
 $b(t) = \sum_{v:b(v)<0} b(v) = -M$ 

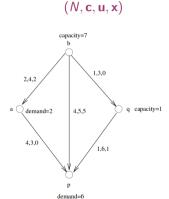
 $\exists$  feasible flow in  $N \iff \exists (s,t)$ -flow in  $N_{st}$  with  $|x| = M \iff \max$  flow in  $N_{st}$  is M

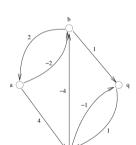
### Residual Network

**Residual Network** N(x): given that a flow x already exists, how much flow excess can be moved in G?

Replace arc  $ij \in N$  with arcs:

|   |            | residual capacity      | cost      |  |  |
|---|------------|------------------------|-----------|--|--|
|   |            | $r_{ij}=u_{ij}-x_{ij}$ | Cij       |  |  |
| j | <i>i</i> : | $r_{ji}=x_{ij}$        | $-c_{ij}$ |  |  |





 $(N(\mathbf{x}), \mathbf{c}')$ 

### Special cases

Shortest path problem path of minimum cost from 
$$s$$
 to  $t$  with costs  $\leq 0$   $b(s) = 1, b(t) = -1, b(i) = 0$  if to any other node?  $b(s) = (n-1), b(i) = 1, u_{ii} = n-1$ 

Max flow problem incur no cost but restricted by bounds steady state flow from s to t  $b(i) = 0 \ \forall i \in V, \qquad c_{ii} = 0 \ \forall ij \in A \qquad ts \in S$ 

$$b(i) = 0 \ \forall i \in V, \quad c_{ij} = 0 \ \forall ij \in A \quad ts \in A$$
  
 $c_{ts} = -1, \quad u_{ts} = \infty$ 

Assignment problem min weighted bipartite matching,

$$|V_1| = |V_2|, A \subseteq V_1 \times V_2$$
  
 $c_{ij}$   
 $b(i) = 1 \ \forall i \in V_1$   $b(i) = -1 \ \forall i \in V_2$   $u_{ij} = 1 \ \forall ij \in A$ 

### Special cases

Transportation problem/Transhipment distribution of goods, warehouses-costumers  $|V_1| \neq |V_2|$ ,  $u_{ii} = \infty$  for all  $ij \in A$ 

$$egin{aligned} \min \sum_{i} c_{ij} x_{ij} \ \sum_{i} x_{ij} \geq b_{j} \ \sum_{j} x_{ij} \leq a_{i} \ x_{ij} \geq 0 \end{aligned} \hspace{0.5cm} orall_{j}$$

if 
$$\sum a_i = \sum b_i$$
 then  $\geq / \leq$  become = if  $\sum a_i > \sum b_i$  then add dummy tank nodes if  $\sum a_i < \sum b_i$  then infeasible

Multi-commodity flow problem ship several commodities using the same network, different origin destination pairs separate mass balance constraints, share capacity constraints, min overall flow

$$\begin{aligned} \min \sum_{k} \mathbf{c}^k \mathbf{x}^k \\ N \mathbf{x}^k &\geq \mathbf{b}^k & \forall k \\ \sum_{k} \mathbf{x}^k_{ij} &\leq \mathbf{u}_{ij} & \forall ij \in A \\ 0 &\leq \mathbf{x}^k_{ij} &\leq \mathbf{u}^k_{ij} \end{aligned}$$

What is the structure of the matrix now? Is the matrix still TUM?

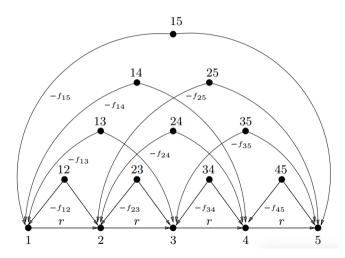
# Application Example Ship loading problem

Plenty of applications. See Ahuja Magnanti Orlin, Network Flows, 1993

- A cargo company (eg, Maersk) uses a ship with a capacity to carry at most r units of cargo.
- The ship sails on a long route (say from Southampton to Alexandria) with several stops at ports in between.
- At these ports cargo may be unloaded and new cargo loaded.
- At each port there is an amount b<sub>ij</sub> of cargo which is waiting to be shipped from port i to port j > i
- Let  $f_{ij}$  denote the income for the company from transporting one unit of cargo from port i to port j.
- The goal is to plan how much cargo to load at each port so as to maximize the total income while never exceeding ship's capacity.



- *n* number of stops including the starting port and the terminal port.
- $N = (V, A, I \equiv 0, u, c)$  be the network defined as follows:
  - $V = \{v_1, v_2, ..., v_n\} \cup \{v_{ij} : 1 \le i < j \le n\}$
  - $A = \{v_1v_2, v_2v_3, ...v_{n-1}v_n\} \cup \{v_{ij}v_i, v_{ij}v_j : 1 \le i < j \le n\}$
  - capacity:  $u_{v_i v_{i+1}} = r$  for i = 1, 2, ..., n-1 and all other arcs have capacity  $\infty$ .
  - cost:  $c_{v_{ij}v_i} = -f_{ij}$  for  $1 \le i < j \le n$  and all other arcs have cost zero (including those of the form  $v_{ij}v_j$ )
  - balance vector:  $b(v_{ij}) = b_{ij}$  for  $1 \le i < j \le n$  and the balance vector of  $b(v_i) = -b_{1i} b_{2i} ... b_{i-1,i}$  for i = 1, 2, ..., n



Claim: the network models the ship loading problem.

- suppose that  $t_{12}, t_{13}, ..., t_{1n}, t_{23}, ..., t_{n-1,n}$  are cargo numbers, where  $t_{ij}$  ( $\leq b_{ij}$ ) is the amount of cargo the ship will transport from port i to port j and that the ship is never loaded above capacity.
- total income is

$$I = \sum_{1 \le i < j \le n} t_{ij} f_{ij}$$

- Let x be the flow in N defined as follows:
  - flow on an arc of the form  $v_{ij}v_i$  is  $t_{ij}$
  - flow on an arc of the form  $v_{ij}v_j$  is  $b_{ij}-t_{ij}$
  - flow on an arc of the form  $v_i v_{i+1}$ , i = 1, 2, ..., n-1, is the sum of those  $t_{ab}$  for which  $a \le i$  and  $b \ge i+1$ .
- since  $t_{ij}$ ,  $1 \le i < j \le n$ , are legal cargo numbers then x is feasible with respect to the balance vector and the capacity restriction.
- the cost of x is -1.

- Conversely, suppose that x is a feasible flow in N of cost J.
- we construct a feasible cargo assignment  $s_{ij}$ ,  $1 \le i < j \le n$  as follows:
  - let  $s_{ij}$  be the value of x on the arc  $v_{ij}v_i$ .
- income −J

#### Well Solved Problems Network Flows Assignment and Transportation

### Outline

1. Well Solved Problems

2. (Minimum Cost) Network Flows

 ${\it 3. Assignment and Transportation}\\$ 

### **Assignment Problem**

**Input**: a set of persons  $P_1, P_2, ..., P_n$ , a set of jobs  $J_1, J_2, ..., J_n$  and an  $n \times n$  matrix  $M = [M_{ij}]$  whose entries are non-negative integers. Here  $M_{ij}$  is a measure for the skill of person  $P_i$  in performing job  $J_j$  (the lower the number the better  $P_i$  performs job  $J_j$ ).

**Goal** is to find an assignment  $\pi$  of persons to jobs so that each person gets exactly one job and the sum  $\sum_{i=1}^{n} M_{i\pi(i)}$  is minimized.

### Matching Algorithms

Matching:  $M \subseteq E$  of pairwise non adjacent edges

- bipartite graphs
  - arbitrant granks
- arbitrary graphs

• cardinality (max or perfect)

weighted

Assignment problem  $\equiv$  min weighted perfect bipartite matching  $\equiv$  special case of min cost flow

### Transportation Problem

**Given:** a set of production plants  $S_1, S_2, ..., S_m$  that produce a certain product to be shipped to a set of re-tailers  $T_1, T_2, ..., T_n$ . For each pair (Si, Tj) there is a real-valued cost  $c_{ij}$  of transporting one unit of the product from  $S_i$  to  $T_j$ . Each plant produces  $a_i, i = 1, 2, ..., m$ , units per time unit and each retailer needs  $b_j, j = 1, 2, ..., n$ , units of the product per time unit.

**Goal:** find a transportation schedule for the whole production (i.e., how many units to send from  $S_i$  to  $T_j$  for i = 1, 2, ..., m, j = 1, 2, ..., n) in order to minimize the total transportation cost.

We assume that  $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$ 

### **Summary**

1. Well Solved Problems

2. (Minimum Cost) Network Flows

 ${\it 3. Assignment and Transportation}\\$