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Separation problem

max{c"x: x € X} = max{c"x : x € conv(X)}
X C7Z", P apolyhedron P CR" and X = PNZ"
Definition (Separation problem for a COP)

Given x* € P;is x* € conv(X)? If not find an inequality ax < b satisfied by all points in X but
violated by the point x*.

(Farkas' lemma states the existence of such an inequality.)



Well Solved Problems

Network Flows

P roperties of Easy P roblems Assignment and Transportation

Four properties that often go together:
Definition
(i) Efficient optimization property: 3 a polynomial algorithm for max{cx : x € X C R"}

(ii) Strong duality property: 3 strong dual D min{w(u) : u € U} that allows to quickly verify
optimality

(iii) Efficient separation problem: 3 efficient algorithm for separation problem

(iv) Efficient convex hull property: a compact description of the convex hull is available

Example:
If explicit convex hull  strong duality holds
efficient separation property (just description of
conv(X))
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Theoretical analysis to prove results about

e strength of certain inequalities that are facet defining
2 ways

e descriptions of convex hull of some discrete X C Z*
several ways, we see one next

Example
Let

X:{(X.,y)ERTxBl:ingmy,x,-ﬁlfori:l,...,m}
i=1

P={(x,y) eR. xR :x; <yfori=1,...,my <1}

Polyhedron P describes conv(X)




Totally Unimodular Matrices

When the LP solution to this problem
IP: max{c"x: Ax < b,x € Z7}

with all data integer will have integer solution?
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Cramer’s rule for solving systems of linear equations:
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Apxg + Anxy = b

XNZOWABXB:b,
Ag m x m non singular matrix

XB 2 0
ae

f adj
C . . : ABJb
ab B det(Ag)
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Definition
e A square integer matrix B is called unimodular (UM) if det(B) = £1

e An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix
of Ais UM

Proposition
o If A'is TUM then all vertices of Ri(A) = {x : Ax = b,x > 0} are integer if b is integer
o If A is TUM then all vertices of Ry(A) = {x : Ax < b,x > 0} are integer if b is integer.

Proof: if Ais TUM then [Ai/] is TUM
Any square, nonsingular submatrix C of [Ail] can be written as

Bi0
- [83]

where B is square submatrix of A. Hence det(C) = det(B) = +1
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Proposition

The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)
An integer matrix A is TUM if
1. aj € {0, —1,+1} forall i,j
2. each column contains at most two non-zero coefficients (Y. | |a;| < 2)

3. if the rows can be partitioned into two sets |, |, such that:
e if a column has 2 entries of same sign, their rows are in different sets
e if a column has 2 entries of different signs, their rows are in the same set

01000
1-10 L=1-10 01111

1-1 -1 0 0 1
L 1] 0 11 0 1 0-1 10111
1 01 00 1 0 10010

10000



Proof: by induction

Basis: one matrix of one element {0, +1,—1} is TUM
Induction: let C be of size k.
If C has column with all Os then it is singular.

If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

Vj:Za,-j:Za,-j

i€l i€h

but then a linear combination of rows is zero and det(C) = 0

Well Solved Problems
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Other matrices with integrality property:
e TUM
e Balanced matrices
e Perfect matrices
o Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

Proposition
A is always TUM if it comes from

e node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (h = U, b =V,B=(U,V,E))

e node-arc incidence matrix of directed graphs (I, = ()

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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Outline

2. (Minimum Cost) Network Flows
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Well Solved Problems

. Network Flows :
Terminology Reigament nd Transportation

Network: e directed graph D = (V/, A)
e arc, directed link, from tail to head
e lower bound /; > 0, Vij € A, capacity uj > l;, Vij € A
e cost ¢jj, linear variation (if ij ¢ A then [ = u; =0, ¢; = 0)
e balance vector b(i), b(i) > 0 supply node (source), b(i) < 0 demand node (sink,
tank), b(i) = 0 transhipment node (assumption >, b(i) = 0)
N =(V,Alu,b,c)

-1 3
1/-/4,3

Bt

A
2/. /5,6 0/- /3,2
3 5/-/8,4@ 2
1P(3h 4).7%.8

Y
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N etwork F I OWS Assignment and Transportation

Flow x: A —= R

balance vector of x: b(v) = > X — > Xu, Vv €V
VUEA wvEA

> 0 source
by(v) ¢ <0 sink/target/tank
=0 balanced

(generalizes the concept of path with b (v) = {0,1,—1})

feasible  [; < x; < ujj, by(i) = b(i)

T _ B - . . .
cost clx =37, cyxj (varies linearly with x)

If iji is a 2-cycle and all /;; = 0, then at least one of x;; and x;; is zero.
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Example

Feasible flow of cost 109
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M i n i mum Cost N etwork F IOWS Assignment and Transportation

Find cheapest flow through a network in order to satisfy demands at certain nodes from available
supplier nodes.

Variables:
Xij € ]Ra—
Objective: min ¢’ x
Nx =b
mian,-jx,-j |<x<u
ijeA
Constraints: mass balance + flow bounds N node arc incidence matrix
Z Xijj — Z xj=b(i) VieV (assumption: all values are integer,
JiiEA JieA we can multiply if rational)

/,'J'SX,'J'SU,'J'
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Xey Xea Xij Xepm
Ceo  Ceo e G e Cem
1 =
—1 1 =
—1 =
T
1 <
<
1 <
<
1 <

ij

Um
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Reductions/Transformations

Lower bounds

Let N = (V, Al u,b,c)

Well Solved Problems
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N = (V,Al v b c)
b(i) = b(i) — I
b'(j) = b(j) +/;

U/-- = U,'j — /,"

19



Undirected arcs

@ 0
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Vertex splitting
If there are bounds and costs of flow passing through vertices where b(v)
a node is visited):

N=(V,AlLucI* u* c*

Network Flows

= 0 (used to ensure that

ds O—>»0 dt

/§ i:

by

Ct

ds &——0 d;

From D to Dst as follows:

Vv eV ~ Vs, vy € V(Ds7) and vsvy € A(DsT)
Vxy € A(D) ~ xzys € A(DsT)
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0 -1
0/-/3,0

), h*e{l*,u* c*}
y), he{l,u,c}

If b(v) =0, then b'(vs) = b'(v;) =0

If b(v) <0, then b'(vs) =0 and b'(v;) = b(v)
If b(v) >0, then b'(vs) = b(v) and b'(v) =0
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(s, t)-flow:
k if v=s
b(v) =< —k ifv=t,
0 otherwise

x| = [bx(s)|

@@

1//2 0//2

' ©50 -
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0//b(b) 0// — b(d)
b(s) b(t)
0//b(c) 0// — b(e)

7 feasible flow in N <= 3 (s, t)-flow in Ny with [x| = M <= max flow in N is M
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Resid ua I N etWOrk Assignment and Transportation

Residual Network /N(x): given that a flow x already exists, how much flow excess can be moved
in G?
Replace arc ij € N with arcs: (N, c,u,x) (N(x),c)

|residual capacity|cost capacity=T

b
i rij B UU B XU CU 2 ~
J i = Xij —Cjj 13.0 1
242
)
2 455 Q q capacity=1 Y ,) a

a () demand=2

-4
-1
43,0 4
16,1 f

9]
P
demand=6

= C
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Special cases

Shortest path problem path of minimum cost from s to t with costs § 0
b(s) =1,b(t) =—1,b(i) =0
if to any other node? b(s) = (n—1).b(i) =1,u5; =n—1

Max flow problem incur no cost but restricted by bounds
steady state flow from s to t
b(iy=0VieV, ci=0VijecA ts€ A

Ces = —1, Ugs = 00

Assignment problem min weighted bipartite matching,
‘V1| = ‘V2|qA - V1 X V2
Cij

b(i)=1Vie Vi b(i)=-1VieVe u;=1VijcA

Well Solved Problems
Network Flows
Assignment and Transportation
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Special cases Ao rormente o Transportation

Transportation problem/Transhipment distribution of goods, warehouses-costumers
|Vi| # | V2, u; = oo for all jj € A

mian,-jx,-j
> x> b vj

ZXU < a Vi
J

X,JZO

if > a; =5 b; then > / < become =
if > a; > > b then add dummy tank nodes
if >~ a; < > b; then infeasible

26



Network Flows

Multi-commodity flow problem ship several commodities using the same network, different origin
destination pairs separate mass balance constraints, share capacity constraints, min
overall flow

min >°, ckx*
Nxk > bk Vk
>k xfj— < uj Vije A
k k
0 < xj; < uj

What is the structure of the matrix now? Is the matrix still TUM?

27



Application Example

Ship loading problem

Plenty of applications. See Ahuja Magnanti Orlin, Network Flows,
1993

e A cargo company (eg, Maersk) uses a ship with a capacity to
carry at most r units of cargo.

e The ship sails on a long route (say from Southampton to
Alexandria) with several stops at ports in between.

o At these ports cargo may be unloaded and new cargo loaded.

o At each port there is an amount bj; of cargo which is waiting to
be shipped from port / to port j >/

e Let f; denote the income for the company from transporting one
unit of cargo from port / to port J.

e The goal is to plan how much cargo to load at each port so as to
maximize the total income while never exceeding ship’s capacity.

Network Flows

28



Well Solved Problems
Network Flows

Application Example: Modeling Assignment and Transportation

e n number of stops including the starting port and the terminal port.

o N=(V,A1=0,u,c) be the network defined as follows:
o V={wvi,va,..,va} U{v;:1<i<j<n}
o A={viva,vavs, ..va_1vpt U{vjvi,vjv; 1 1 <i<j<n}
e capacity: uy,y,,, = r fori=1,2,...,n—1 and all other arcs have capacity cc.

e cost: ¢, = —fj for 1 < i < j < nand all other arcs have cost zero (including those of the form
vijvj)

e balance vector: b(v;;) = bjj for 1 < i < j < n and the balance vector of
b(V,') = —b1,‘ — b2,’ — ... bi—l,f for | = 1,27 ey N
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Application

Example:

Modeling
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Application Example: Modeling

Network Flows

Claim: the network models the ship loading problem.

suppose that tio, t13, ..., tip, t23, ..., to—1,, are cargo numbers, where t; (< bj;) is the amount
of cargo the ship will transport from port / to port j and that the ship is never loaded above
capacity.

total income is

I= Y tify

1<i<j<n

Let x be the flow in N defined as follows:

o flow on an arc of the form v;v; is t;
o flow on an arc of the form vjjv; is bjj — tj
e flow on an arc of the form vivi11, i =1,2,...,n— 1, is the sum of those t., for which a </ and
b>i+1.
since tjj, 1 <i < j < n, are legal cargo numbers then x is feasible with respect to the balance
vector and the capacity restriction.

the cost of x is —/.
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Application Example: Modeling

o Conversely, suppose that x is a feasible flow in NV of cost J.

e we construct a feasible cargo assignment s, 1 </ < j < n as follows:

o let s;; be the value of x on the arc vjv;.

e income —J

Well Solved Problems
Network Flows
Assignment and Transportation
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Outline

3. Assignment and Transportation
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ASS i g nmen t P ro b I em Assignment and Transportation

Input: a set of persons P1, P, ..., P,, a set of jobs J1, ), ..., J, and an n x n matrix M = [Mj]
whose entries are non-negative integers. Here M is a measure for the skill of person P; in
performing job J; (the lower the number the better P; performs job J;).

Goal is to find an assignment 7 of persons to jobs so that each person gets exactly one job and the
sum Y7 M,y is minimized.

34



M a tC h i n g A Igor i t h m S Assignment and Transportation

Matching: M C E of pairwise non adjacent edges

e bipartite graphs e cardinality (max or perfect)

e arbitrary graphs e weighted

Assignment problem = min weighted perfect bipartite matching = special case of min cost flow
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Tra ns p orta t i on P ro b I em Assignment and Transportation

Given: a set of production plants 51, Sy, ..., S, that produce a certain product to be shipped to a
set of re-tailers T, T, ..., T,. For each pair (Si, Tj) there is a real-valued cost c;; of transporting
one unit of the product from S; to T;. Each plant produces a;,i = 1,2,..., m, units per time unit
and each retailer needs b;,j = 1,2, ..., n, units of the product per time unit.

Goal: find a transportation schedule for the whole production (i.e., how many units to send from S;
to Tjfori=1,2,....,m, j=1,2,....n) in order to minimize the total transportation cost.

We assume that > a2, = > " | b;

j=1
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