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Duality
Network SimplexShortest Path - Dual LP

z = min
∑
ij∈A

cijxij∑
j :ji∈A

xji −
∑
j :ij∈A

xij = 1 for i = s (πs)∑
j :ji∈A

xij −
∑
j :ij∈A

xji = 0 ∀i ∈ V \ {s, t} (πi )∑
j :ji∈A

xji −
∑
j :ij∈A

xij = −1 for i = t (πt)

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = max πs − πt

πj − πi ≤ cij ∀ij ∈ A

Hence, the shortest path can be found by potential values πi on nodes such that πs = z , πt = 0
and πj − πi ≤ cij for ij ∈ A
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Network SimplexMaximum (s, t)-Flow

Adding a backward arc from t to s:

z = max xts∑
j :ji∈A

xij −
∑
j :ij∈A

xji = 0 ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij)

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = min
∑
ij∈A

uijwij

πi − πj + wij ≥ 0 ∀ij ∈ A

πt − πs ≥ 1

wij ≥ 0 ∀ij ∈ A
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gLP = min
∑
ij∈A

uijwij (1)

πi − πj + wij ≥ 0 ∀ij ∈ A (2)
πt − πs ≥ 1 (3)

wij ≥ 0 ∀ij ∈ A (4)

• Without (3) all potentials would go to 0.

• Keep w low because of objective function

• Keep all potentials low  (3) πs = 0, πt = 1

• Cut C : on left =1 on right =0. Where is the transition?

• Vars w identify the cut  πj − πi + wij ≥ 0  wij = 1

wij =

{
1 if ij ∈ C

0 otherwise

for those arcs that minimize the cut capacity
∑

ij∈A uijwij

• Complementary slackness: wij = 1 =⇒ xij = uij
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Network Simplex

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

min
X

 ∑
ij∈A:i∈X ,j 6∈X

uij : s ∈ X ⊂ V \ {t}


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Duality
Network SimplexMax Flow Algorithms

Optimality Condition

• Ford Fulkerson augmenting path algorithm O(m|x∗|)

• Edmonds-Karp algorithm (augment by shortest path) in O(nm2)

• Dinic algorithm in layered networks O(n2m)

• Karzanov’s push relabel O(n2m)
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Duality
Network SimplexMin Cost Flow - Dual LP

min
∑
ij∈A

cijxij∑
j :ji∈A

xij −
∑
j :ij∈A

xji = bi ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij)

xij ≥ 0 ∀ij ∈ A

Dual problem:

max
∑
i∈V

biπi −
∑
ij∈E

uijwij (1)

−cij − πi + πj ≤ wij ∀ij ∈ E (2)

wij ≥ 0 ∀ij ∈ A (3)
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Network Simplex

• define reduced costs c̄ij = cij + πj − πi , hence (2) becomes −c̄ij ≤ wij

• ue =∞ then we = 0 (from obj. func) and c̄ij ≥ 0 (optimality condition)

• ue <∞ then we ≥ 0 and we ≥ −c̄ij then we = max{0,−c̄ij}, hence we is determined by
others and irrelevant

• Complementary slackness th. for optimal solutions:
each primal variable × the corresponding dual slack must be equal 0, ie, xe(c̄e + we) = 0;

• xe > 0 then −c̄e = we = max{0,−c̄e},
xe > 0 =⇒ −c̄e ≥ 0 or equivalently (by negation) c̄e > 0 =⇒ xe = 0

each dual variable × the corresponding primal slack must be equal 0, ie, we(xe − ue) = 0;
• we > 0 then xe = ue
−c̄e > 0 =⇒ xe = ue or equivalently c̄e < 0 =⇒ xe = ue

Hence:
c̄e > 0 then xe = 0
c̄e < 0 then xe = ue 6=∞
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Network SimplexMin Cost Flow Algorithms

The conditions derived can be used to define a solution approach for the minimum cost flow
problem.

Note that if a set of potentials πi , i ∈ V are given, and the cost of a circuit wrt. the reduced costs
for the edges (c̄ij = cij + πj − πj) are calculated, the cost remains the same as the original costs as
the potentials are “telescoped” to 0.

Theorem (Optimality conditions)

Let x be feasible flow in N(V ,A, l,u,b) then x is min cost flow in N iff N(x) contains no directed
cycle of negative cost.

Note that a (directed) circuit with negative cost in N(x) corresponds to a negative cost cycle in N,
if costs are added for forward edges and subtracted for backward edges.

• Cycle canceling algorithm with Bellman Ford Moore for negative cycles O(nm2UC ),
U = max |ue |, C = max |ce |

• Build up algorithms O(n2mM), M = max |b(v)|
13
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Duality
Network SimplexMin Cost Flow

• A is not full-rank: adding all rows  null vector, i.e., the rows of A are not linearly indep.

• Since we assume that total supply equal total demand, i.e.,
∑

i∈V bi = 0 then
rank[A] = rank[A b].

• Hence, one of the equations can be canceled.
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Duality
Network Simplex

• assume network N is connected

• cycle: here, a set of arcs forming a closed path (i.e., a path in which the first and the last node
of the path coincide) when ignoring their orientation

• spanning tree: here, a tree that reaches everynode (it coincides with the classical notion of
spanning tree if one disregards arc orientation).

Theorem (Spanning Trees)

For an undirected graph D ′ = (N,A′), the following are equivalent:
(a) G ′ is a tree (acyclic and connected);
(b) G ′ is acyclic and has n − 1 arcs; and
(c) G ′ is connected and has n − 1 arcs.
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Network Simplex

Since we know that the matrix A is not full-rank, a basis of A consists of only n − 1 linearly
independent columns of A. These columns correspond to a collection of arcs of the flow network.

Theorem
Given a connected flow network, letting A be its incidence matrix, a submatrix B of size
(n − 1)× (n − 1) is a basis of A if and only if the arcs associated with the columns of B form a
spanning tree.

Proof:
if columns from A correspond to a spanning tree =⇒ they are lin. indep., B is upper triangular
if a subset of columns of A are a basis =⇒ they are n − 1 and acyclic

Hence, all basic feasible solutions explored by the simplex algorithm are spanning trees of the flow
network.
As for any LP, also in min-cost flow problems there are feasible, infeasible and degenerate bases.
(feasible if xB = A−1

B b ≥ 0).
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Duality
Network SimplexExample

• solve BxB = b in value of variables to check feasibility; easy because of structure or because
done by updates.

• solve πTB = cTB in π (dual potential variables to derive reduced costs); easy because of
structure of B.

• calculate c̄ij = cij + πj − πi
20
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How much can we increase the flow θ through
(54)?
Until (32) reaches zero
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Network Simplex

• It can be proved that, because the basis corresponds to a tree, the equations can always be
solved by simple substitution.

• The order of substitution can always be found by “walking around the tree”.

• Efficient implementations further reduce the cost of determining π by updating it as they walk
around the tree, rather than computing it anew at each iteration.

• When the network simplex steps are to be carried out by a computer, it is not so obvious how

• A few concise and clever data structures are used to represent the basis tree in a way that
allows the walk around the tree and finding the circuit induced by the entering arc efficiently.

• The data structures can themselves be efficiently updated as the tree changes from iteration
to iteration.
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