DM811

HEURISTICS AND LOCAL SEARCH ALGORITHMS FOR COMBINATORIAL OPTIMZATION

Lecture 13

Experimental Analysis

Marco Chiarandini

Outline

```
1. Experimental Algorithmics
Definitions
Performance Measures
2. Exploratory Data Analysis
Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
3. Examples
Results Task 1
Results Task 2
```

1. Experimental Algorithmics

Definitions
Performance Measures
2. Exploratory Data Analysis

Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
3. Examples

Results Task 1
Results Task 2
4. Organizational Issues

Contents and Goals

Goals of this part of the course (to be continued in DM812):
Provide a view of issues in Experimental Algorithmics

- Exploratory data analysis
- Presenting results in a concise way with graphs and tables
- Organizational issues and Experimental Design
- Basics of inferential statistics
- Sequential statistical testing: a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis but also adding an important tool to the development of a good solver for a given problem.

Experimental Algorithmics is an important part in the algorithm production cycle, which is referred to as Algorithm Engineering

Experimental Algorithmics

In empirical studies we consider simulation programs which are the implementation of a mathematical model (the algorithm)
[McGeoch, 1996]
Algorithmic models of programs can vary according to their level of instantiation:

- minimally instantiated (algorithmic framework), e.g., simulated annealing
- mildly instantiated: includes implementation strategies (data structures)
- highly instantiated: includes details specific to a particular programming language or computer architecture

Experimental Algorithmics

Goals

- Defining standard methodologies
- Comparing relative performance of algorithms so as to identify the best ones for a given application
- Characterizing the behavior of algorithms
- Identifying algorithm separators, i.e., families of problem instances for which the performance differ
- Providing new insights in algorithm design

Definitions

For each general problem Π (e.g., TSP, GCP) we denote by C_{Π} a set (or class) of instances and by $\pi \in \mathrm{C}_{\Pi}$ a single instance.

The object of analysis are SLS algorithms, i.e., randomized search heuristics (with no guarantee of optimality).

- single-pass heuristics (denoted \mathcal{A}^{\dashv}): have an embedded termination, for example, upon reaching a certain state

Eg , Construction heuristics, iterative improvement

- asymptotic heuristics (denoted \mathcal{A}^{∞}): do not have an embedded termination and they might improve their solution asymptotically

The most typical scenario considered

Asymptotic heuristics with time (or iteration) limit decided a priori The algorithm \mathcal{A}^{∞} is halted when time expires.

Deterministic case: \mathcal{A}^{∞} on π returns a solution of cost χ.
The performance of \mathcal{A}^{∞} on π is a scalar $y=x$.

Randomized case: \mathcal{A}^{∞} on π returns a solution of cost X, where X is a random variable.

The performance of \mathcal{A}^{∞} on π is the univariate $Y=X$.
[This is not the only relevant scenario: to be refined later]

Generalization

On a specific instance, the random variable Y that defines the performance measure of an algorithm is described by its probability distribution/density function

$$
\operatorname{Pr}(\mathrm{Y}=\mathrm{y} \mid \pi)
$$

It is often more interesting to generalize the performance on a class of instances C_{Π}, that is,

$$
\operatorname{Pr}\left(\mathrm{Y}=\mathrm{y}, \mathrm{C}_{\Pi}\right)=\sum_{\pi \in \Pi} \operatorname{Pr}(\mathrm{Y}=\mathrm{y} \mid \pi) \operatorname{Pr}(\pi)
$$

Random Variables and Probability

Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be predicted with certainty.
The uncertainty is described by a probability distribution.

Discrete variables
Probability distribution:

$$
p_{i}=P\left[x=v_{i}\right]
$$

Cumulative Distribution Function (CDF)

$$
\mathrm{F}(v)=\mathrm{P}[\mathrm{x} \leq v]=\sum_{i} p_{i}
$$

Mean

$$
\mu=E[X]=\sum x_{i} p_{i}
$$

Variance

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum\left(x_{i}-\mu\right)^{2} p_{i}
$$

Continuous variables
Probability density function (pdf):

$$
f(v)=\frac{d F(v)}{d v}
$$

Cumulative Distribution Function (CDF):

$$
F(v)=\int_{-\infty}^{v} f(v) d v
$$

Mean

$$
\mu=E[X]=\int x f(x) d x
$$

Variance

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\int(x-\mu)^{2} f(x) d x_{1}
$$

Sampling

In experiments,

1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of the performance measure Y , denoted $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{r}}$, which are independent and identically distributed (i.i.d.), i.e.

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{1}, \ldots, y_{r} \mid \pi\right)=\prod_{j=1}^{r} \operatorname{Pr}\left(y_{j} \mid \pi\right) \\
& \operatorname{Pr}\left(y_{1}, \ldots, y_{r}\right)=\sum_{\pi \in C_{\pi}} \operatorname{Pr}\left(y_{1}, \ldots, y_{r} \mid \pi\right) \operatorname{Pr}(\pi)
\end{aligned}
$$

Instance Selection

In real-life applications a simulation of $p(\pi)$ can be obtained by historical data.

In simulation studies instances may be:

- real world instances
- random variants of real world-instances
- online libraries
- randomly generated instances

They may be grouped in classes according to some features whose impact may be worth studying:

- type (for features that might impact performance)
- size (for scaling studies)
- hardness (focus on hard instances)
- application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability $p(\pi)=c$

Statistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

- describe, summarizing, the data (descriptive statistics)
- make inference on those data (inferential statistics)

Statistics helps to

- guarantee reproducibility
- make results reliable
(are the observed results enough to justify the claims?)
- extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e., engineering), statistics helps to take correct design decisions decisions with the least amount of experimentation

Objectives of the Experiments

- Comparison:

bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

- Standard statistical methods experimental designs, test hypothesis and estimation

Characterization

Interpolation: fitting models to data Extrapolation: building models of data, explaining phenomena

- Standard statistical methods: linear and non linear regression
model fittin

Measures and Transformations

On a single instance

Computational effort indicators

- number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited nodes in the search tree, consistency checks, etc.)
- total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

- value returned by the cost function
- error from optimum/reference value
- gap $\frac{|\mathrm{UB}-\mathrm{LB}|}{\mathrm{UB}}$ or $\frac{|\mathrm{UB}-\mathrm{LB}|}{\mathrm{UB}}$
- ranks

Measures and Transformations

On a class of instances

Computational effort indicators

- no transformation if the interest is in studying scaling
- standardization if a fixed time limit is used
- geometric mean (used for a set of numbers whose values are meant to be multiplied together or are exponential in nature),
- otherwise, better to group homogeneously the instances

Solution quality indicators
Different instances implies different scales \Rightarrow need for an invariant measure
(However, many other measures can be taken both on the algorithms and on the instances [McGeoch, 1996])

Outline

1. Experimental Algorithmics
 Definitions

Performance Measures
2. Exploratory Data Analysis

Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
3. Examples

Results Task 1
Results Task 2

Measures and Transformations

On a class of instances

Solution quality indicators

- Distance or error from a reference value (assume minimization case):

$$
\begin{aligned}
& e_{1}(x, \pi)=\frac{x(\pi)-\bar{x}(\pi)}{\sqrt{\sigma(\pi)}} \quad \text { standard score } \\
& e_{2}(x, \pi)=\frac{x(\pi)-x^{\mathrm{opt}}(\pi)}{x^{\mathrm{opt}}(\pi)} \quad \text { relative error } \\
& e_{3}(x, \pi)=\frac{x(\pi)-x^{\mathrm{opt}}(\pi)}{x^{\text {worst }}(\pi)-x^{\mathrm{opt}}(\pi)} \quad \text { invariant [Zemel, 1981] }
\end{aligned}
$$

- optimal value computed exactly or known by instance construction
- surrogate value such bounds or best known values
- Rank (no need for standardization but loss of information)

Summary Measures for Sampled Data

Measures to describe or characterize a population

- Measure of central tendency, location
- Measure of dispersion

One such a quantity is

- a parameter if it refers to the population (Greek letters)
- a statistics if it is an estimation of a population parameter from the sample (Latin letters)

Measures of central tendency

- Arithmetic Average (Sample mean)

$$
\bar{X}=\frac{\sum x_{i}}{n}
$$

- Quantile: value above or below which lie a fractional part of the data (used in nonparametric statistics)
- Median

$$
\mathcal{M}=x_{(n+1) / 2}
$$

- Quartile

$$
\mathrm{Q}_{1}=\mathrm{x}_{(\mathrm{n}+1) / 4} \quad \mathrm{Q}_{3}=\mathrm{x}_{3(\mathrm{n}+1) / 4}
$$

- q-quantile
q of data lies below and $1-\mathrm{q}$ lies above
- Mode
value of relatively great concentration of data (Unimodal vs Multimodal distributions)

Measure of dispersion

- Sample range

$$
\mathrm{R}=\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{1}
$$

- Sample variance

$$
s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{X}\right)^{2}
$$

- Standard deviation

$$
\mathrm{s}=\sqrt{\mathrm{s}^{2}}
$$

- Inter-quartile range

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

R functions:

> x <-runif $(10,0,1$)

mean(x), median(x), quantile(x), quantile(x,0.25)
range(x), $\operatorname{var}(x), \operatorname{sd}(x), \operatorname{IQR}(x)$
$>$ fivenum(x)
\#(minimum, lower-hinge, median, upper-hinge, maximum)
[1] $0.186720 .266820 .289270 .69359 \quad 0.92343$
> summary (x)
> aggregate(x,list(factors),median)
$>$ boxplot(x)
A. Single-pass heuristics
B. Asymptotic heuristics:

Two approaches:

1. Univariate
1.1 Time as an external parameter decided a priori
1.2 Solution quality as an external parameter decided a priori
2. Cost dependent on running time:

Single-pass heuristics

Deterministic case: \mathcal{A}^{\dagger} on class C_{Π} Randomized case: \mathcal{A}^{\dagger} on class C_{Π} returns a solution of cost x with computational effort t (e.g., running time). returns a solution of cost X with computational effort T , where X and T are random variables.

The performance of \mathcal{A}^{-1} on class C_{Π} is the vector $\vec{y}=(x, t)$.

The performance of \mathcal{A}^{-1} on class C_{Π} is the bivariate $\vec{Y}=(X, T)$.

Example

Scenario:

$\triangleright 3$ heuristics $\mathcal{A}_{1}^{-1}, \mathcal{A}_{2}^{-1}, \mathcal{A}_{3}^{-1}$ on class C_{Π}.
Δ homogeneous instances or need for data transformation.
$\triangleright 1$ or r runs per instance

- Interest: inspecting solution cost and running time to observe and compare the level of approximation and the speed.

Tools:

- Scatter plots of solution-cost and run-time

Multi-Criteria Decision Making

Needed some definitions on dominance relations
In Pareto sense, for points in \mathbf{R}^{2}
$\vec{x}^{1} \preceq \vec{x}^{2} \quad$ weakly dominates $\quad x_{i}^{1} \leq x_{i}^{2}$ for all $i=1, \ldots, n$
$\vec{x}^{1} \| \vec{x}^{2} \quad$ incomparable \quad neither $\vec{x}^{1} \preceq \vec{x}^{2}$ nor $\vec{x}^{2} \preceq \vec{x}^{1}$

Example

Asymptotic heuristics

There are two approaches:
1.1. Time as an external parameter decided a priori. The algorithm is halted when time expires.

Deterministic case: \mathcal{A}^{∞} on class C_{Π} returns a solution of cost χ.

The performance of \mathcal{A}^{∞} on class C_{Π} is the scalar $\mathrm{y}=\mathrm{x}$.

Randomized case: \mathcal{A}^{∞} on class C_{Π} returns a solution of cost X , where X is a random variable.

The performance of \mathcal{A}^{∞} on class C_{Π} is the univariate $\mathrm{Y}=\mathrm{X}$.

Scenario:

$\triangleright 3$ heuristics $\mathcal{A}_{1}^{\infty}, \mathcal{A}_{2}^{\infty}, \mathcal{A}_{3}^{\infty}$ on class C_{Π}.
(Or 3 heuristics $\mathcal{A}_{1}^{\infty}, \mathcal{A}_{2}^{\infty}, \mathcal{A}_{3}^{\infty}$ on class C_{Π} without interest in computation time because negligible or comparable)
\triangleright homogeneous instances (no data transformation) or heterogeneous (data transformation)
$\triangleright 1$ or r runs per instance
\triangleright a priori time limit imposed

- Interest: inspecting solution cost

Tools:

- Histograms (summary measures: mean or median or mode?)
- Boxplots
- Empirical cumulative distribution functions (ECDFs)

Stochastic Dominance

Definition: Algorithm \mathcal{A}_{1} probabilistically dominates algorithm \mathcal{A}_{2} on a problem instance, iff its CDF is always "below" that of \mathcal{A}_{2}, i.e.:

$$
\mathrm{F}_{1}(\mathrm{x}) \leq \mathrm{F}_{2}(\mathrm{x}), \quad \forall \mathrm{x} \in \mathrm{X}
$$

R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.
> load("TS.class-G.dataR")
> G[1:5,]
alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt 1 TS1 G-1000-0.5-30-1.1.col 1599.9006195955442595510 .0246330 2 TS1 G-1000-0.5-30-1.1.col 2649.7366083880130395810 .0006230
3 TS1 G-1000-0.5-30-1.1. col 3649.908618487749487710 .0326330 4 TS1 G-1000-0.5-30-1.1.col 4689.9486226996409699610 .0766330 5 TS1 G-1000-0.5-30-1.1.col 5639.912620398652398610 .0406330
$>$
> library (lattice)
> bwplot(alg ~ sol | inst,data=G)
If we want to make an aggregate analysis we have the following choices:

- maintain the raw data,
- transform data in standard error,
- transform the data in relative error,
- transform the data in an invariant error,
- transform the data in ranks.

Maintain the raw data
R functions:

```
> par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
```

> \#original data
> boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")

Transform data in standard error
R functions:

> \#standard error

> T1 <- split(G\$sol,list(G\$inst))
> T2 <- lapply(T1,scale, center=TRUE, scale=TRUE)
> T3 <- unsplit(T2,list(G\$inst))
> T4 <- split(T3,list(G\$alg))
$>$ T5 <- stack(T4)
> boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma)))))
> Ecdf(T5\$values,group=T5\$ind,main=expression(paste("Standard error:
", $\operatorname{frac}(x-\operatorname{bar}(x)$, sqrt (sigma)))))
> \#standard error
> G\$scale <- 0
> split(G\$scale, G\$inst) <- lapply(split(G\$sol, G\$inst), scale,center=TRUE, scale=TRUE)

Transform the data in relative error
R functions:

> \#relative error

> G\$err2 <- (G\$sol-G\$opt)/G\$opt
> boxplot(err2~alg, data=G,horizontal=TRUE, main=expression(paste("Relative error: ", frac (x-x^(opt), $\left.\left.\left.x^{\wedge}(o p t)\right)\right)\right)$)
> Ecdf(G\$err2,group=G\$alg,main=expression(paste("Relative error: ",frac(x-x -(opt), $x^{\wedge}($ (opt)))))

Transform the data in an invariant error
We use as surrogate of $x^{\text {worst }}$ the median solution returned by the simplest algorithm for the graph coloring, that is, the ROS heuristic.
> \#error 3
> load("ROS.class-G.dataR")
> F1 <- aggregate(F\$sol,list(inst=F\$inst),median)
> F2 <- split(F1\$x,list(F1\$inst))
> G\$ref <- sapply(G\$inst,function(x) F2[[x]])
> G\$err3 <- (G\$sol-G\$opt)/(G\$ref-G\$opt)
> boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant error: ",frac(x-x^(opt), x^{\wedge} (worst)- $\left.\left.x^{\wedge}(o p t)\right)\right)$)
> Ecdf(G\$err3,group=G\$alg,main=expression(paste("Invariant error: ",frac(x-x -(opt), x^{\wedge} (worst) $-\mathrm{x}^{-}($opt) $\left.)\right)$)

Transform the data in ranks

> \#rank
> T2 <- lapply(T1, rank)
> T3 <- unsplit(T2,list(G\$inst))
> T4 <- split(T3,list(G\$alg))
> T5b <- stack(T4)
> boxplot(values~ind,data=T5b,horizontal=TRUE, main="Ranks")
> Ecdf(T5b\$values,group=T5b\$ind,main="Ranks")

Scenario B

Asymptotic heuristics

There are two approaches:
1.2. Solution quality as an external parameter decided a priori. The algorithm is halted when quality is reached.

Deterministic case: \mathcal{A}^{∞} on class
C_{Π} finds a solution in running time t
Randomized case: \mathcal{A}^{∞} on class C_{Π} finds a solution in running time T where T is a random variable.
The performance of \mathcal{A}^{∞} on class C_{Π} is the scalar $\mathrm{y}=\mathrm{t}$.

The performance of \mathcal{A}^{∞} on class C_{Π} is the univariate $\mathrm{Y}=\mathrm{T}$.

Dealing with Censored Data

\triangleright Heuristics \mathcal{A}^{\dashv} stopped before completion or \mathcal{A}^{∞} truncated (always the case)

- Interest: determining whether a prefixed goal (optimal/feasible) has been reached

The computational effort to attain the goal can be specified by a cumulative distribution function $\mathrm{F}(\mathrm{t})=\mathrm{P}(\mathrm{T}<\mathrm{t})$ with T in $[0, \infty)$.

If in a run i we stop the algorithm at time L_{i} then we have a Type I right censoring, that is, we know either

- T_{i} if $T_{i} \leq L_{i}$
- or $\mathrm{T}_{\mathrm{i}} \geq \mathrm{L}_{\mathrm{i}}$.

Hence, for each run i we need to record $\min \left(T_{i}, L_{i}\right)$ and the indicator variable for observed optimal/feasible solution attainment, $\delta_{i}=I\left(T_{i} \leq L_{i}\right)$.
\triangleright An exact vs an heuristic algorithm for the
2-edge-connectivity augmentation problem.

- Interest: time to find the optimum on different instances.

Uncensored:

$$
\mathrm{F}(\mathrm{t})=\frac{\# \text { runs }<\mathrm{t}}{\mathrm{n}}
$$

Censored:

$$
\mathrm{F}(\mathrm{t})=\frac{\# \text { runs }<\mathrm{t}}{\mathrm{n}}
$$

Asymptotic heuristics

There are two approaches:
2. Cost dependent on running time:

Deterministic case: \mathcal{A}^{∞} on π returns a current best solution x at each observation in t_{1}, \ldots, t_{k}.
The performance of \mathcal{A}^{∞} on π is the profile indicated by the vector $\vec{y}=\left\{x\left(t_{1}\right), \ldots, x\left(t_{k}\right)\right\}$.

Randomized case: \mathcal{A}^{∞} on π produces a monotone stochastic process in solution cost $X(\tau)$ with any element dependent on the predecessors.

The performance of \mathcal{A}^{∞} on π is the multivariate

$$
\vec{Y}=\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{k}\right)\right) .
$$

Example

Scenario:

$\triangleright 3$ heuristics $\mathcal{A}_{1}^{\infty}, \mathcal{A}_{2}^{\infty}, \mathcal{A}_{3}^{\infty}$ on instance π.
\triangleright single instance hence no data transformation.
$\triangleright r$ runs

- Interest: inspecting solution cost over running time to determine whether the comparison varies over time intervals

Tools:

- Quality profiles

The performance is described by multivariate random variables of the kind $\vec{Y}=\left\{Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(l_{k}\right)\right\}$.
Sampled data are of the form $\vec{Y}_{i}=\left\{Y_{i}\left(t_{1}\right), Y_{i}\left(t_{2}\right), \ldots, Y_{i}\left(t_{k}\right)\right\}, i=1, \ldots, 10$ (10 runs per algorithm on one instance)

The performance is described by multivariate random variables of the kind $\vec{Y}=\left\{Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(l_{k}\right)\right\}$.
Sampled data are of the form $\vec{Y}_{i}=\left\{Y_{i}\left(t_{1}\right), Y_{i}\left(t_{2}\right), \ldots, Y_{i}\left(t_{k}\right)\right\}, i=1, \ldots, 10$ (10 runs per algorithm on one instance)

The performance is described by multivariate random variables of the kind $\overrightarrow{\mathrm{Y}}=\left\{\mathrm{Y}\left(\mathrm{t}_{1}\right), \mathrm{Y}\left(\mathrm{t}_{2}\right), \ldots, \mathrm{Y}\left(\mathrm{l}_{\mathrm{k}}\right)\right\}$.
Sampled data are of the form $\vec{Y}_{i}=\left\{Y_{i}\left(t_{1}\right), Y_{i}\left(t_{2}\right), \ldots, Y_{i}\left(t_{k}\right)\right\}, i=1, \ldots, 10$ (10 runs per algorithm on one instance)

The median behavior of the two algorithms

Making Plots

http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf
[Sanders, 2002]

- Should the experimental setup from the exploratory phase be redesigned to increase conciseness or accuracy?
- What parameters should be varied? What variables should be measured?
- How are parameters chosen that cannot be varied?
- Can tables be converted into curves, bar charts, scatter plots or any other useful graphics?
- Should tables be added in an appendix?
- Should a 3D-plot be replaced by collections of 2D-curves?
- Can we reduce the number of curves to be displayed?
- How many figures are needed?
- Should the x-axis be transformed to magnify interesting subranges?
- Should the x-axis have a logarithmic scale? If so, do the x-values used for measuring have the same basis as the tick marks?
- Is the range of x-values adequate?
- Do we have measurements for the right x-values, i.e., nowhere too dense or too sparse?
- Should the y-axis be transformed to make the interesting part of the data more visible?
- Should the y-axis have a logarithmic scale?
- Is it misleading to start the y-range at the smallest measured value? (if not too much space wasted start from 0)
- Clip the range of y-values to exclude useless parts of curves?
- Can we use banking to 45° ?
- Are all curves sufficiently well separated?
- Can noise be reduced using more accurate measurements?
- Are error bars needed? If so, what should they indicate? Remember that measurement errors are usually not random variables.
- Connect points belonging to the same curve.
- Only use splines for connecting points if interpolation is sensible.
- Do not connect points belonging to unrelated problem instances.
- Use different point and line styles for different curves.
- Use the same styles for corresponding curves in different graphs.
- Place labels defining point and line styles in the right order and without concealing the curves.
- Give axis units
- Captions should make figures self contained.
- Give enough information to make experiments reproducible.
- Golden ratio rule: make the graph wider than higher [Tufte 1983].
- Rule of 7 : show at most 7 curves (omit those clearly irrelevant).
- Avoid: explaining axes, connecting unrelated points by lines, cryptic abbreviations, microscopic lettering, pie charts

Outline

 World Scientific Publishing. Mathematical Society, Providence, RI, USA.McGeoch C.C. (1996). Toward an experimental method for algorithm simulation. INFORMS Journal on Computing, 8(1), pp. 1-15.
Sanders P. (2002). Presenting data from experiments in algorithmics. In Experimental Algorithmics - From Algorithm Design to Robust and Efficient Software,, vol. 2547 of LNCS, pp. 181-196. Springer.

Coffin M. and Saltzman M.J. (2000). Statistical analysis of computational tests of algorithms and heuristics. INFORMS Journal on Computing, 12(1), pp. 24-44.
Demetrescu C., Finocchi I., and Italiano G. (2004). Algorithm engineering. In Current Trends in Theoretical Computer Science: the Challenge of the New Century, edited by A. G.Paun G.Rozemberg, vol. 1: Algorithms and Complexity.

Johnson D.S. (2002). A theoretician's guide to the experimental analysis of algorithms. In Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, edited by M.H. Goldwasser, D.S. Johnson, and C.C. McGeoch, vol. 59 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pp. 215-250. American

Suggested Reading

1. Experimental Algorithmics

Definitions
Performance Measures
2. Exploratory Data Analysis

Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
3. Examples

Results Task 1
Results Task 2
4. Organizational Issues

Last year competition

- Graph Coloring Problem
- Task 1: submit a construction heuristic Set of instances A: 4 instances
- Task 2: submit an algorithm derived from the use of a metaheuristic for construction heuristics
Time limit for each single run: 90 seconds
Set of instances B: 15 instances
- Task 3: a peak performance algorithm

Time limit for each single run: 360 seconds
Set of instance C : The instances in the set are generated in order to admit different kind of colorings, ranging from equi-partite classes to highly variable classes.

View of raw data aggregated for the 4 instances

Original data

Comparative Analysis

View of raw data within each instance

View of raw data ranked within instances and aggregated for the 4 instances

Trade off Solution-Quality vs Run-Time
The trade off computation time vs sol quality. Raw data.

The trade off computation time vs sol quality. Raw data.

The trade off computation time vs sol quality.
Solution quality ranked within the instances and computation time in raw terms

Scaling Analysis

Linear regression in log-log plots \Rightarrow polynomial growth

Numerical data

Size	071275	181180	191076	230183	240284	250684	270383
200	0.008	0.00267	0.00267	0.5787	0.00533	0.42933	0.01333
400	0.05067	0.01333	0.01067	4.5443	0.024	0.98667	0.05067
800	0.36002	0.05067	0.04	37.68	0.13868	3.2313	0.2
1600	2.7175	0.20268	0.16801	313.27	0.85339	11.709	0.96267
3200	19.711	0.84805	0.66937	2674.8	6.1524	42.287	4.9413

Size	DSATUR	RLF	ROS
200	0	0.01067	0.00267
400	0.008	0.07734	0.00533
800	0.032	0.58404	0.02667
1600	0.13601	4.2563	0.11467
3200	0.5627	31.519	0.46936

Comparative visualization

Experimental Setup

- 15 new flat instances created

Type	$\#$ instances	Upper bound
flat-1000-50-0-?.col	5	50
flat-1000-60-0-?.col	5	60
flat-1000-76-0-?.col	5	76

- each algorithm run once on each of the 15 new instances
- fairness principle: same computational resources to all algorithms $\Rightarrow 90$ seconds on Intel(R) Celeron(R) CPU $2.40 \mathrm{GHz}, 1 \mathrm{~GB}$ RAM (120 seconds for 230183)
- restart ROS heuristic used as reference algorithm
- restart RLF and DSATUR also included

Results

Outline

1. Experimental Algorithmics

Definitions
Performance Measures
2. Exploratory Data Analysis

Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
3. Examples

Results Task 1
Results Task 2
4. Organizational Issues

Notes on Experimental Environment

Some organizational hints:

- run a script (bash, perl, python, php) that calls different programs, one for each algorithm to test, on different instances.
- when launched each program writes the search profile in a file (log file or output file).
Read instance. Time: 0.016001
begin try 1
fead instay
begin try
begt
best 0 col 22 time 0.004000 iter 0 par-iter 0
best 3 coi 21 time 0.004000 iter 0 par_ iter 0
best 3 col 21 time 0.004000 iter 0 par- - iter 0
best 1 col 21 time 0.004000 iter 0 par_ i ter 0
best 0 col 21 time 0.004000 iter 1 par- - iter 1
best 6 col 20 time 0.004000 iter 3 par iter 1
best 6 col 20 time 0.000000 iter 3 par- - iter 1
best 4 col 20 time 0.004000 iter 4 par- - iter 2

exit iter 7 time 1.000062
run a script (bash, perl, python, php) that parses the output files above and put it in a file with the format similar to:

Ros 1e45-115..col 3 31 310.00267

RLF 1e450_15b.col 3160.008
- load the data in R and make all kind of analysis.
- Check the correctness of your solutions many times
- Plot the development of
- best visited solution quality
- current solution quality
over time and compare with other features of the algorithm.
- Profile time consumption per program components under Linux: gprof

1. add flag -pg in compilation
2. run the program
3. gprof program-file > a.txt
