DM811 HEURISTICS AND LOCAL SEARCH ALGORITHMS FOR COMBINATORIAL OPTIMZATION	Outline
Lecture 6 Local Search Marco Chiarandini	1. Local Search Introduction Components Iterative Improvement Neighborhoods Representations
slides based on http://www.sls-book.net/ H. Hoos and T. Stützle, 2005	2
The Single Machine Total Tardiness Problem	Outline
$ \begin{array}{l} \mbox{Given: a set of n jobs {J_1,, J_n$ to be processed on a single machine and for each job J_i a processing time p_i, a weight w_i and a due date d_i. \\ \mbox{Task: Find a schedule that minimizes $f_{i=1}^n w_i `T_i$ where $T_i = {C_i - d_i$, 0} (C_i$ completion time of job J_i$) \\ \mbox{Example:} \\ \hline \hline \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

Local Search Paradigm

- search space = complete candidate solutions
- search step = modification of one or more solution components
- iteratively generate and evaluate candidate solutions
 - decision problems: evaluation = test if solution
 - ▶ optimization problems: evaluation = check objective function value
- evaluating candidate solutions is typically computationally much cheaper than finding (optimal) solutions

Iterative Improvement (II): determine initial candidate solution s while s has better neighbors do choose a neighbor s' of s such that f(s') < f(s)s := s'

- vertices: candidate solutions (search positions)
- vertex labels: evaluation function
- edges: connect "neighboring" positions
- s: (optimal) solution
- c: current search position

6

Definitions: Local Search Algorithm (1)

Given a (combinatorial) optimization problem Π and one of its instances π :

• search space $S(\pi)$

specified by candidate solution representation:

discrete structures: sequences, permutations, graphs, partitions (*e.g.*, for SAT: array (sequence of all truth assignments to propositional variables)

Note: solution set $S'(\pi) \subseteq S(\pi)$ (*e.g.*, for SAT: models of given formula)

- evaluation function f(π) : S(π) → ℝ
 (e.g., for SAT: number of false clauses)
- neighborhood function, N(π) : S → 2^{S(π)} (*e.g.*, for SAT: neighboring variable assignments differ in the truth value of exactly one variable)

Definition: Local Search Algorithm (2)

- set of memory states M(π) (may consist of a single state, for LS algorithms that do not use memory)
- initialization function init : Ø → P(S(π) × M(π)) (specifies probability distribution over initial search positions and memory states)
- Step function step: S(π) × M(π) → P(S(π) × M(π)) (maps each search position and memory state onto probability distribution over subsequent, neighboring search positions and memory states)
- ► termination predicate terminate : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(\{\top, \bot\})$ (determines the termination probability for each search position and memory state)

7

Б

<pre>procedure LS-Decision(π) input: problem instance $\pi \in \Pi$ output: solution $s \in S'(\pi)$ or \emptyset $(s, m) := init(\pi);$ while not terminate(π, s, m) do $(s, m) := step(\pi, s, m);$ end if $s \in S'(\pi)$ then return s else return \emptyset end end LS-Decision</pre>	<pre>procedure LS-Minimization(π') input: problem instance $\pi' \in \Pi'$ output: solution $s \in S'(\pi')$ or \emptyset (s,m) := init(π'); $\hat{s} := s$; while not terminate(π', s, m) do (s,m) := step(π', s, m); if f(π', s) < f(π', \hat{s}) then $\hat{s} := s$; end end if $\hat{s} \in S'(\pi')$ then return \hat{s} else return \emptyset end end LS-Minimization</pre>
9	10
Definition: Local Search Algorithm	Example: Uninformed random walk for SAT
For given problem instance π :	search space S: set of all truth assignments to variables
► search space $S(\pi)$	in given formula F (solution set S': set of all models of F)
► solution set $S'(\pi) \subseteq S(\pi)$	▶ neighborhood relation N: 1-flip neighborhood, i.e., assignments are
▶ neighborhood relation $\mathcal{N}(\pi) \subseteq S(\pi) \times S(\pi)$	neighbors under \mathcal{N} iff they differ in the truth value of exactly one variable
► evaluation function $f(\pi) : S \mapsto \mathbf{R}$	
► set of memory states $M(\pi)$	• evaluation function not used, or $f(s) = 0$ if model $f(s) = 1$ otherwise
► initialization function init : $\emptyset \mapsto \mathcal{P}(S(\pi) \times M(\pi))$	• memory: not used, <i>i.e.</i> , $M := \{0\}$
► step function step : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(S(\pi) \times M(\pi))$	
► termination predicate terminate : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(\{\top, \bot\})$	

Example: Uninformed random walk for SAT (continued)

- ▶ initialization: uniform random choice from S, *i.e.*, $init(, \{a', m\}) := 1/|S|$ for all assignments a' and memory states m
- ▶ step function: uniform random choice from current neighborhood, *i.e.*, step({a, m}, {a', m}) := 1/|N(a)| for all assignments a and memory states m, where N(a) := {a' ∈ S | $\mathcal{N}(a, a')$ } is the set of all neighbors of a.
- ▶ termination: when model is found, *i.e.*, terminate({a, m}, {⊤}) := 1 if a is a model of F, and O otherwise.

Definition: LS Algorithm Components (continued)

Search Space

Defined by the solution representation:

- permutations
 - linear (scheduling)
 - circular (TSP)
- arrays (assignment problems: GCP)
- sets or lists (partition problems: Knapsack)

13

Definition: LS Algorithm Components (continued)

Neighborhood function

Also defined as: $\mathcal{N}:S\times S\to\{T,F\}$ or $\mathcal{N}\subseteq S\times S$

- ▶ neighborhood (set) of candidate solution s: $N(s) := \{s' \in S \mid \mathcal{N}(s, s')\}$
- ► neighborhood size is |N(s)|
- ▶ neighborhood is symmetric if: $s' \in N(s) \Rightarrow s \in N(s')$
- ▶ neighborhood graph of (S, f, N, π) is a directed vertex-weighted graph: $G_{\mathcal{N}}(\pi) := (V, A)$ with $V = S(\pi)$ and $(uv) \in A \Leftrightarrow v \in N(u)$ (if symmetric neighborhood \Rightarrow undirected graph)
- Solution j is reachable from solution i if neighborhood graph has a path from i to j.
- strongly connected neighborhood graph
- weakly optimally connected neighborhood graph

A neighborhood function is also defined by means of an operator.

An operator Δ is a collection of operator functions $\delta:S\to S$ such that

$$s' \in N(s) \iff \exists \delta \in \Delta, \delta(s) = s'$$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for SAT (solution components = single variable assignments)
- 2-exchange neighborhood for TSP (solution components = edges in given graph)

15

Definition: LS Algorithm Components (continued)

Note:

- ► Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Memory state m can consist of multiple independent attributes, *i.e.*, $M(\pi) := M_1 \times M_2 \times \ldots \times M_{l(\pi)}$.
- Local search algorithms are *Markov processes*: behavior in any search state {s, m} depends only on current position s and (limited) memory m.

Definition: LS Algorithm Components (continued)

Search step (or move):

pair of search positions s,s' for which s' can be reached from s in one step, *i.e.*, $\mathcal{N}(s,s')$ and $\mathtt{step}(\{s,m\},\{s',m'\})>0$ for some memory states $m,m'\in M.$

- Search trajectory: finite sequence of search positions < s₀, s₁,..., s_k > such that (s_{i-1}, s_i) is a search step for any i ∈ {1,..., k} and the probability of initializing the search at s₀ is greater zero, *i.e.*, init({s₀, m}) > 0 for some memory state m ∈ M.
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - random
 - based on evaluation function
 - based on memory

17

Uninformed Random Picking

 $\blacktriangleright \ \mathcal{N} := S \times S$

- does not use memory and evaluation function
- ▶ init, step: uniform random choice from S, *i.e.*, for all $s, s' \in S$, init $(s) := step({s}, {s'}) := 1/|S|$

Uninformed Random Walk

- does not use memory and evaluation function
- \blacktriangleright init: uniform random choice from S
- ▶ step: uniform random choice from current neighborhood, *i.e.*, for all $s, s' \in S$, step({s}, {s'}) := 1/|N(s)| if $\mathcal{N}(s, s')$, and 0 otherwise

Note: These uninformed LS strategies are quite ineffective, but play a role in combination with more directed search strategies.

Definition: LS Algorithm Components (continued)

Evaluation (or cost) function:

- function f(π) : S(π) → ℝ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- *Objective function*: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (*e.g.*, dynamic local search).

Iterative Improvement

- does not use memory
- init: uniform random choice from S
- ▶ step: uniform random choice from improving neighbors, *i.e.*, step({s}, {s'}) := 1/|I(s)| if $s' \in I(s)$, and 0 otherwise, where $I(s) := \{s' \in S \mid \mathcal{N}(s, s') \text{ and } f(s') < f(s)\}$
- terminates when no improving neighbor available (to be revisited later)
- different variants through modifications of step function (to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

Example: Iterative Improvement for SAT

- search space S: set of all truth assignments to variables in given formula F (solution set S': set of all models of F)
- neighborhood relation N: 1-flip neighborhood (as in Uninformed Random Walk for SAT)
- memory: not used, *i.e.*, $M := \{0\}$
- initialization: uniform random choice from S, i.e., $init(\emptyset, \{a'\}) := 1/|S|$ for all assignments a'
- evaluation function: f(a) := number of clauses in F that are *unsatisfied* under assignment a (*Note:* f(a) = 0 iff a is a model of F.)
- ▶ step function: uniform random choice from improving neighbors, *i.e.*, step(a, a') := 1/#I(a) if s' ∈ I(a), and 0 otherwise, where I(a) := { $a' | \mathcal{N}(a, a') \land f(a') < f(a)$ }

22

24

▶ termination: when no improving neighbor is available *i.e.*, terminate $(a, \top) := 1$ if $I(a) = \emptyset$, and 0 otherwise.

21

Definition:

- ▶ Local minimum: search position without improving neighbors w.r.t. given evaluation function f and neighborhood \mathcal{N} , *i.e.*, position $s \in S$ such that $f(s) \leq f(s')$ for all $s' \in N(s)$.
- ▶ Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.
- ► Local maxima and strict local maxima: defined analogously.

There might be more than one neighbor that have better cost.

Pivoting rule decides which to choose:

▶ Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbor, i.e., randomly select from I*(s) := {s' ∈ N(s) | f(s') = g*}, where g* := min{f(s') | s' ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step.

 First Improvement: Evaluate neighbors in fixed order, choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of evaluation can have significant impact on performance.

```
procedure TSP-2opt-first(s)
   input: an initial candidate tour s \in S(\in)
   output: a local optimum s \in S(\pi)
   \Delta = 0:
   do
      Improvement=FALSE;
      for i = 1 to n - 2 do
      if i = 1 then n' = n - 1 else n' = n
          for i = i + 2 to n' do
             \Delta_{ii} = d(c_i, c_i) + d(c_{i+1}, c_{i+1}) - d(c_i, c_{i+1}) - d(c_i, c_{i+1})
             if \Delta_{ii} < 0 then
                 UpdateTour(s,i,j);
                 Improvement=TRUE;
          end
      end
   until Improvement==TRUE;
end TSP-2opt-first
```

Example: Random-order first improvement for the TSP

- Given: TSP instance G with vertices v_1, v_2, \ldots, v_n .
- search space: Hamiltonian cycles in G; use standard 2-exchange neighborhood
- Initialization:

search position := fixed canonical path $<\nu_1,\nu_2,\ldots,\nu_n,\nu_1>P$:= random permutation of $\{1,2,\ldots,n\}$

- Search steps: determined using first improvement w.r.t. f(p) = weight of path p, evaluating neighbors in order of P (does not change throughout search)
- Termination: when no improving search step possible (local minimum)

25

Solution Representations and Neighborhoods

Example: Random order first improvement for SAT

```
procedure URW-for-SAT(F,maxSteps)
   input: propositional formula F, integer maxSteps
   output: model of F or \emptyset
   choose assignment \varphi of truth values to all variables in F
      uniformly at random:
   steps := 0;
   while not((\phi satisfies F) and (steps < maxSteps)) do
      select x uniformly at random from \{x'|x' \text{ is a variable in } F and
      changing value of x' in \varphi decreases the number of unsatisfied clauses};
      steps := steps+1;
   end
   if \varphi satisfies F then
      return \varphi
   else
      return Ø
   end
end URW-for-SAT
```

Three different types of solution representations:

- Permutation
 - Inear permutation: Single Machine Total Weighted Tardiness Problem
 - circular permutation: Traveling Salesman Problem
- Assignment: Graph Coloring Problem, SAT, CSP
- ► Set, Partition: Max Independent Set

A neighborhood function $\mathcal{N}:S\to S\times S$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta:S\to S$ such that

$$s' \in N(s) \iff \exists \delta \in \Delta | \delta(s) = s$$

27

Permutations

 $\Pi(n)$ indicates the set all permutations of the numbers $\{1,2,\ldots,n\}$

 $(1,2\ldots,n)$ is the identity permutation ι .

If $\pi \in \Pi(n)$ and $1 \leq i \leq n$ then:

- $\blacktriangleright \ \pi_i$ is the element at position i
- \blacktriangleright $pos_{\pi}(i)$ is the position of element i

Alternatively, a permutation is a bijective function $\pi(i)=\pi_i$

the permutation product $\pi\cdot\pi'$ is the composition $(\pi\cdot\pi')_{\mathfrak{i}}=\pi'(\pi(\mathfrak{i}))$

For each π there exists a permutation such that $\pi^{-1}\cdot\pi=\iota$

 $\Delta_N \subset \Pi$

Neighborhood Operators for Circular Permutations

Reversal (2-edge-exchange)

$$\Delta_R = \{\delta_R^{ij} | 1 \le i < j \le n\}$$

$$\delta_{\mathsf{R}}^{\mathsf{i}\mathsf{j}}(\pi) = (\pi_1 \dots \pi_{\mathsf{i}-1} \pi_{\mathsf{j}} \dots \pi_{\mathsf{i}} \pi_{\mathsf{j}+1} \dots \pi_{\mathsf{n}})$$

Block moves (3-edge-exchange)

$$\Delta_B = \{ \delta_B^{ijk} | 1 \le i < j < k \le n \}$$

$$\delta_{\mathrm{B}}^{\mathrm{ij}}(\pi) = (\pi_1 \dots \pi_{\mathrm{i}-1} \pi_j \dots \pi_k \pi_1 \dots \pi_{\mathrm{j}-1} \pi_{k+1} \dots \pi_n)$$

Short block move (Or-edge-exchange)

$$\Delta_{SB} = \{\delta_{SB}^{ij} | 1 \le i < j \le n\}$$

$$\delta_{SB}^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{j+1} \pi_{j+2} \pi_i \dots \pi_{j-1} \pi_{j+3} \dots \pi_n$$

Neighborhood Operators for Linear Permutations

Neighborhood Operators for Assignments

An assignment can be represented as a mapping $\sigma: \{X_1 \dots X_n\} \to \{\nu: \nu \in D, |D| = k\}:$

$$\sigma = \{X_i = v_i, X_j = v_j, \ldots\}$$

One-exchange operator

$$\Delta_{1E} = \{ \delta_{1E}^{\text{il}} | 1 \leq \text{i} \leq n, 1 \leq \text{l} \leq k \}$$

$$\delta_{1E}^{\mathfrak{il}}\left(\sigma\right) = \left\{\sigma:\sigma'(X_{\mathfrak{i}}) = \nu_{\mathfrak{l}} \text{ and } \sigma'(X_{\mathfrak{j}}) = \sigma(X_{\mathfrak{j}}) \ \forall \mathfrak{j} \neq \mathfrak{i} \right\}$$

Two-exchange operator

$$\Delta_{2E} = \{\delta_{2E}^{ij} | 1 \le i < j \le n\}$$

$$\delta_{2E}^{ij}\left\{\sigma:\sigma'(X_i)=\sigma(X_j),\;\sigma'(X_j)=\sigma(X_i)\;\;\text{and}\;\;\sigma'(X_l)=\sigma(X_l)\;\;\forall l\neq i,j\right\}$$

32

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not selected $s: \{X\} \rightarrow \{C, \overline{C}\}$ (it can also be represented by a bit string)

One-addition operator

$$\begin{split} \Delta_{1E} &= \{ \delta_{1E}^{\nu} | \nu \in \overline{C} \} \\ \delta_{1E}^{\nu} (s) &= \big\{ s : C' = C \cup \nu \text{ and } \overline{C}' = \overline{C} \setminus \nu \big\} \end{split}$$

One-deletion operator

$$\begin{split} \Delta_{1E} = \{ \delta_{1E}^{\nu} | \nu \in C \} \\ \delta_{1E}^{\nu} (s) = \big\{ s : C' = C \setminus \nu \text{ and } \overline{C}' = \overline{C} \cup \nu \} \end{split}$$

Swap operator

$$\Delta_{1E} = \{ \delta_{1E}^{\nu} | \nu \in C, u \in \overline{C} \}$$

$$\delta_{1E}^{\nu} (s) = \{ s : C' = C \cup u \setminus \nu \text{ and } \overline{C}' = \overline{C} \cup \nu \setminus u \}$$