DM811

HEURISTICS AND LOCAL SEARCH ALGORITHMS FOR COMBINATORIAL OPTIMZATION

Lecture 6
Local Search

Marco Chiarandini

1. Local Search

Introduction
Components
Iterative Improvement
Neighborhoods Representations
slides based on
http://www.sls-book.net/
H. Hoos and T. Stützle, 2005

The Single Machine Total Tardiness Problem

Given: a set of n jobs $\left\{\mathrm{J}_{1}, \ldots, \mathrm{~J}_{\mathrm{n}}\right\}$ to be processed on a single machine and for each job J_{i} a processing time p_{i}, a weight w_{i} and a due date d_{i}.
Task: Find a schedule that minimizes
the total weighted tardiness $\sum_{i=1}^{n} w_{i} \cdot T_{i}$
where $T_{i}=\left\{C_{i}-d_{i}, 0\right\}\left(C_{i}\right.$ completion time of job $\left.J_{i}\right)$
Example:

Job	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{6}$						
Processing Time	3	2	2	3	4	3						
Due date	6	13	4	9	7	17						
Weight	2	3	1	5	1	2						
Sequence $\pi=\mathrm{J}_{3}, \mathrm{~J}_{1}, \mathrm{~J}_{5}, \mathrm{~J}_{4}, \mathrm{~J}_{1}, \mathrm{~J}_{6}$												
Job												
J_{3}								$\mathrm{~J}_{1}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{1}$	$\mathrm{~J}_{6}$
C_{i}	2	5	9	12	14	17						
$\mathrm{~T}_{\mathrm{i}}$	0	0	2	3	1	0						
$w_{i} \cdot \mathrm{~T}_{\mathrm{i}}$	0	0	2	15	3	0						

Outline

1. Local Search

Introduction
Components
Iterative Improvement
Neighborhoods Representations

Local Search Paradigm

- search space $=$ complete candidate solutions
- search step $=$ modification of one or more solution components
- iteratively generate and evaluate candidate solutions
- decision problems: evaluation $=$ test if solution
- optimization problems: evaluation = check objective function value
- evaluating candidate solutions is typically computationally much cheaper than finding (optimal) solutions

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do
choose a neighbor s^{\prime} of s such that $f\left(s^{\prime}\right)<f(s)$
L $s:=s^{\prime}$

Local search — global view

- vertices: candidate solutions (search positions)
- vertex labels: evaluation function
- edges: connect "neighboring" positions
- s: (optimal) solution
- c: current search position

Definition: Local Search Algorithm (2)

- set of memory states $M(\pi)$
(may consist of a single state, for LS algorithms that do not use memory)
- initialization function init: $\emptyset \mapsto \mathcal{P}(S(\pi) \times M(\pi))$
(specifies probability distribution over initial search positions and memory states)
- step function step : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(S(\pi) \times M(\pi))$
(maps each search position and memory state onto probability distribution over subsequent, neighboring search positions and memory states)
- termination predicate terminate : $\mathrm{S}(\pi) \times M(\pi) \mapsto \mathcal{P}(\{\top, \perp\})$ (determines the termination probability for each search position and memory state)

procedure LS-Decision (π)

input: problem instance $\pi \in \Pi$
output: solution $s \in S^{\prime}(\pi)$ or \emptyset
$(s, m):=\operatorname{init}(\pi)$;
while not $\operatorname{terminate}(\pi, s, m)$ do

$$
(\mathrm{s}, \mathrm{~m}):=\operatorname{step}(\pi, \mathrm{s}, \mathrm{~m})
$$

end

if $s \in S^{\prime}(\pi)$ then

return s

else
return \emptyset
end
end LS-Decision

procedure LS-Minimization $\left(\pi^{\prime}\right)$

input: problem instance $\pi^{\prime} \in \Pi^{\prime}$
output: solution $s \in S^{\prime}\left(\pi^{\prime}\right)$ or \emptyset
$(\mathrm{s}, \mathrm{m}):=\operatorname{init}\left(\pi^{\prime}\right)$;
s $:=\mathrm{s}$;
while not terminate $\left(\pi^{\prime}, s, m\right)$ do $(\mathrm{s}, \mathrm{m}):=\operatorname{step}\left(\pi^{\prime}, \mathrm{s}, \mathrm{m}\right) ;$ if $f\left(\pi^{\prime}, s\right)<f\left(\pi^{\prime}, \widehat{s}\right)$ then $\hat{s}:=s ;$
en
end
if $\hat{s} \in S^{\prime}\left(\pi^{\prime}\right)$ then return \widehat{s}
else
return \emptyset
end
end LS-Minimization

Definition: Local Search Algorithm

For given problem instance π :

- search space $S(\pi)$
- solution set $S^{\prime}(\pi) \subseteq S(\pi)$
- neighborhood relation $\mathcal{N}(\pi) \subseteq S(\pi) \times S(\pi)$
- evaluation function $f(\pi): S \mapsto \mathbf{R}$
- set of memory states $M(\pi)$
- initialization function init: $\emptyset \mapsto \mathcal{P}(S(\pi) \times M(\pi))$
- step function step : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(S(\pi) \times M(\pi))$
- termination predicate terminate : $S(\pi) \times M(\pi) \mapsto \mathcal{P}(\{T, \perp\})$

Example: Uninformed random walk for SAT

- search space S : set of all truth assignments to variables in given formula F
(solution set S^{\prime} : set of all models of F)
- neighborhood relation \mathcal{N} : 1-flip neighborhood, i.e., assignments are neighbors under \mathcal{N} iff they differ in
the truth value of exactly one variable
- evaluation function not used, or $f(s)=0$ if model $f(s)=1$ otherwise
- memory: not used, i.e., $M:=\{0\}$

Example: Uninformed random walk for SAT (continued)

- initialization: uniform random choice from S, i.e., init $\left(,\left\{a^{\prime}, m\right\}\right):=1 /|S|$ for all assignments a^{\prime} and memory states m
- step function: uniform random choice from current neighborhood, i.e., $\operatorname{step}\left(\{a, m\},\left\{a^{\prime}, m\right\}\right):=1 /|N(a)|$
for all assignments a and memory states m, where $N(a):=\left\{a^{\prime} \in S \mid \mathcal{N}\left(a, a^{\prime}\right)\right\}$ is the set of all neighbors of a.
- termination: when model is found, i.e., terminate $(\{a, m\},\{T\}):=1$ if a is a model of F, and 0 otherwise.

Definition: LS Algorithm Components (continued)

Neighborhood function

Also defined as: $\mathcal{N}: S \times S \rightarrow\{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- neighborhood (set) of candidate solution $s: N(s):=\left\{s^{\prime} \in \mathrm{S} \mid \mathcal{N}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\right\}$
- neighborhood size is $|\mathrm{N}(\mathrm{s})|$
- neighborhood is symmetric if: $s^{\prime} \in \mathrm{N}(\mathrm{s}) \Rightarrow \mathrm{s} \in \mathrm{N}\left(\mathrm{s}^{\prime}\right)$
- neighborhood graph of ($\mathrm{S}, \mathrm{f}, \mathrm{N}, \pi$) is a directed vertex-weighted graph: $\mathrm{G}_{\mathcal{N}}(\pi):=(\mathrm{V}, \mathrm{A})$ with $\mathrm{V}=\mathrm{S}(\pi)$ and $(\mathfrak{u} v) \in \mathrm{A} \Leftrightarrow v \in \mathrm{~N}(\mathrm{u})$ (if symmetric neighborhood \Rightarrow undirected graph)
- Solution \mathfrak{j} is reachable from solution \mathfrak{i} if neighborhood graph has a path from i to j.
- strongly connected neighborhood graph
- weakly optimally connected neighborhood graph

Definition: LS Algorithm Components (continued)

Search Space

Defined by the solution representation:

- permutations
- linear (scheduling)
- circular (TSP)
- arrays (assignment problems: GCP)
- sets or lists (partition problems: Knapsack)

A neighborhood function is also defined by means of an operator.
An operator Δ is a collection of operator functions $\delta: S \rightarrow S$ such that

$$
s^{\prime} \in \mathrm{N}(\mathrm{~s}) \quad \Longleftrightarrow \quad \exists \delta \in \Delta, \delta(s)=\mathrm{s}^{\prime}
$$

Definition

k-exchange neighborhood: candidate solutions s, s^{\prime} are neighbors iff s differs from s^{\prime} in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for SAT (solution components $=$ single variable assignments)
- 2-exchange neighborhood for TSP (solution components $=$ edges in given graph)

Definition: LS Algorithm Components (continued)

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Memory state m can consist of multiple independent attributes, i.e., $M(\pi):=M_{1} \times M_{2} \times \ldots \times M_{l(\pi)}$.
- Local search algorithms are Markov processes:
behavior in any search state $\{s, m\}$ depends only on current position s and (limited) memory m.

Definition: LS Algorithm Components (continued)

Search step (or move):
pair of search positions s, s^{\prime} for which
s^{\prime} can be reached from s in one step, i.e., $\mathcal{N}\left(s, s^{\prime}\right)$ and
step $\left(\{s, m\},\left\{s^{\prime}, m^{\prime}\right\}\right)>0$ for some memory states $m, m^{\prime} \in M$.

- Search trajectory: finite sequence of search positions $\left.<s_{0}, s_{1}, \ldots, s_{k}\right\rangle$ such that $\left(s_{i-1}, s_{i}\right)$ is a search step
for any $i \in\{1, \ldots, k\}$ and the probability of initializing
the search at s_{0} is greater zero, i.e., init $\left(\left\{s_{0}, m\right\}\right)>0$
for some memory state $m \in M$.
- Search strategy: specified by init and step function; to some extent independent of problem instance and
other components of LS algorithm.
- random
- based on evaluation function
- based on memory

Definition: LS Algorithm Components (continued)

Evaluation (or cost) function:

- function $f(\pi): S(\pi) \mapsto \mathbb{R}$ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- Objective function: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (e.g., dynamic local search).

Iterative Improvement

- does not use memory
- init: uniform random choice from S
- step: uniform random choice from improving neighbors, i.e., $\operatorname{step}\left(\{s\},\left\{s^{\prime}\right\}\right):=1 /|\mathrm{I}(\mathrm{s})|$ if $s^{\prime} \in \mathrm{I}(s)$, and 0 otherwise, where $\mathrm{I}(\mathrm{s}):=\left\{\mathrm{s}^{\prime} \in \mathrm{S} \mid \mathcal{N}\left(\mathrm{s}, \mathrm{s}^{\prime}\right)\right.$ andf $\left.\left(\mathrm{s}^{\prime}\right)<\mathrm{f}(\mathrm{s})\right\}$
- terminates when no improving neighbor available (to be revisited later)
- different variants through modifications of step function (to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

Example: Iterative Improvement for SAT

- search space S: set of all truth assignments to variables in given formula F
(solution set S^{\prime} : set of all models of F)
- neighborhood relation \mathcal{N} : 1-flip neighborhood
(as in Uninformed Random Walk for SAT)
- memory: not used, i.e., $M:=\{0\}$
- initialization: uniform random choice from S, i.e., init $\left(\emptyset,\left\{a^{\prime}\right\}\right):=1 /|S|$ for all assignments a^{\prime}
- evaluation function: $f(a):=$ number of clauses in F that are unsatisfied under assignment a
(Note: $f(a)=0$ iff a is a model of F.)
- step function: uniform random choice from improving neighbors, i.e., $\operatorname{step}\left(a, a^{\prime}\right):=1 / \# I(a)$ if $s^{\prime} \in I(a)$,
and 0 otherwise, where $I(a):=\left\{a^{\prime} \mid \mathcal{N}\left(a, a^{\prime}\right) \wedge f\left(a^{\prime}\right)<f(a)\right\}$
- termination: when no improving neighbor is available
i.e., terminate $(a, \top):=1$ if $\mathrm{I}(\mathrm{a})=\emptyset$, and 0 otherwise.

There might be more than one neighbor that have better cost.
Pivoting rule decides which to choose:

- Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbor, i.e., randomly select from $I^{*}(s):=\left\{s^{\prime} \in N(s) \mid f\left(s^{\prime}\right)=g^{*}\right\}$, where $\mathrm{g}^{*}:=\min \left\{\mathrm{f}\left(\mathrm{s}^{\prime}\right) \mid \mathrm{s}^{\prime} \in \mathrm{N}(\mathrm{s})\right\}$.

Note: Requires evaluation of all neighbors in each step.

- First Improvement: Evaluate neighbors in fixed order, choose first improving step encountered.

Note: Can be much more efficient than Best Improvement; order of evaluation can have significant impact on performance.

```
procedure TSP-2opt-first(s)
    input: an initial candidate tour \(s \in S(\in)\)
    output: a local optimum \(s \in S(\pi)\)
    \(\Delta=0\);
    do
        Improvement=FALSE;
        for \(i=1\) to \(n-2\) do
        if \(\mathfrak{i}=1\) then \(n^{\prime}=n-1\) elsen \(n^{\prime}=n\)
            for \(\mathfrak{j}=\mathfrak{i}+2\) to \(n^{\prime}\) do
                \(\Delta_{i j}=d\left(c_{i}, c_{j}\right)+d\left(c_{i+1}, c_{j+1}\right)-d\left(c_{i}, c_{i+1}\right)-d\left(c_{j}, c_{j+1}\right)\)
            if \(\Delta_{i j}<0\) then
                    UpdateTour(s,i,j);
                    Improvement=TRUE;
            end
        end
    until Improvement==TRUE;
end TSP-2opt-first
```

Example: Random-order first improvement for the TSP

- Given: TSP instance G with vertices $v_{1}, v_{2}, \ldots, v_{n}$.
- search space: Hamiltonian cycles in G;
use standard 2-exchange neighborhood
- Initialization:
search position := fixed canonical path $\left\langle v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right\rangle$ $P:=$ random permutation of $\{1,2, \ldots, n\}$
- Search steps: determined using first improvement w.r.t. $f(p)=$ weight of path p, evaluating neighbors in order of P (does not change throughout search)
- Termination: when no improving search step possible (local minimum)

Example: Random order first improvement for SAT
procedure URW-for-SAT (F, maxSteps)
input: propositional formula F, integer maxSteps
output: model of F or \emptyset
choose assignment φ of truth values to all variables in F uniformly at random;
steps :=0;
while $\operatorname{not}((\varphi$ satisfies $F)$ and (steps $<\operatorname{maxSteps}))$ do
select x uniformly at random from $\left\{x^{\prime} \mid x^{\prime}\right.$ is a variable in F and changing value of x^{\prime} in φ decreases the number of unsatisfied clauses $\}$; steps $:=$ steps +1 ;
end
if φ satisfies F then return φ
else
return \emptyset
end
end URW-for-SAT

Solution Representations and Neighborhoods

Three different types of solution representations:

- Permutation
- linear permutation: Single Machine Total Weighted Tardiness Problem
- circular permutation: Traveling Salesman Problem
- Assignment: Graph Coloring Problem, SAT, CSP
- Set, Partition: Max Independent Set

A neighborhood function $\mathcal{N}: S \rightarrow S \times S$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta: S \rightarrow S$ such that

$$
s^{\prime} \in \mathrm{N}(\mathrm{~s}) \quad \Longleftrightarrow \quad \exists \delta \in \Delta \mid \delta(s)=\mathrm{s}^{\prime}
$$

$\Pi(n)$ indicates the set all permutations of the numbers $\{1,2, \ldots, n\}$
$(1,2 \ldots, n)$ is the identity permutation l .
If $\pi \in \Pi(n)$ and $1 \leq i \leq n$ then:

- π_{i} is the element at position i
- $\operatorname{pos}_{\pi}(i)$ is the position of element i

Alternatively, a permutation is a bijective function $\pi(i)=\pi_{i}$
the permutation product $\pi \cdot \pi^{\prime}$ is the composition $\left(\pi \cdot \pi^{\prime}\right)_{i}=\pi^{\prime}(\pi(i))$
For each π there exists a permutation such that $\pi^{-1} \cdot \pi=\iota$

$$
\Delta_{N} \subset \Pi
$$

Swap operator

$$
\begin{gathered}
\Delta_{S}=\left\{\delta_{S}^{i} \mid 1 \leq \mathfrak{i} \leq n\right\} \\
\delta_{S}^{i}\left(\pi_{1} \ldots \pi_{i} \pi_{i+1} \ldots \pi_{n}\right)=\left(\pi_{1} \ldots \pi_{i+1} \pi_{i} \ldots \pi_{n}\right)
\end{gathered}
$$

Interchange operator

$$
\Delta_{X}=\left\{\delta_{X}^{i \mathfrak{j}} \mid 1 \leq \mathfrak{i}<\mathfrak{j} \leq \mathfrak{n}\right\}
$$

$$
\delta_{X}^{i j}(\pi)=\left(\pi_{1} \ldots \pi_{i-1} \pi_{\mathfrak{j}} \pi_{\mathfrak{i}+1} \ldots \pi_{j-1} \pi_{i} \pi_{\mathfrak{j}+1} \ldots \pi_{n}\right)
$$

Insert operator

$$
\begin{gathered}
\Delta_{I}=\left\{\delta_{I}^{i j} \mid 1 \leq \mathfrak{i} \leq n, 1 \leq \mathfrak{j} \leq n, \mathfrak{j} \neq \mathfrak{i}\right\} \\
\delta_{I}^{i j}(\pi)= \begin{cases}\left(\pi_{1} \ldots \pi_{\mathfrak{i}-1} \pi_{\mathfrak{i}+1} \ldots \pi_{\mathfrak{j}} \pi_{\mathfrak{i}} \pi_{\mathfrak{j}+1} \ldots \pi_{n}\right) & \mathfrak{i}<\mathfrak{j} \\
\left(\pi_{1} \ldots \pi_{\mathfrak{j}} \pi_{\mathfrak{i}} \pi_{\mathfrak{j}+1} \ldots \pi_{\mathfrak{i}-1} \pi_{\mathfrak{i}+1} \ldots \pi_{n}\right) & \mathfrak{i}>\mathfrak{j}\end{cases}
\end{gathered}
$$

Neighborhood Operators for Assignments

An assignment can be represented as a mapping
$\sigma:\left\{X_{1} \ldots X_{n}\right\} \rightarrow\{v: v \in \mathrm{D},|\mathrm{D}|=k\}:$

$$
\sigma=\left\{X_{i}=v_{i}, X_{j}=v_{j}, \ldots\right\}
$$

One-exchange operator

$$
\begin{gathered}
\Delta_{1 \mathrm{E}}=\left\{\delta_{1 \mathrm{E}}^{\mathrm{il}} \mid 1 \leq \mathfrak{i} \leq \mathfrak{n}, 1 \leq l \leq k\right\} \\
\delta_{1 \mathrm{E}}^{\mathrm{il}}(\sigma)=\left\{\sigma: \sigma^{\prime}\left(\mathrm{X}_{\mathrm{i}}\right)=v_{l} \text { and } \sigma^{\prime}\left(\mathrm{X}_{\mathrm{j}}\right)=\sigma\left(\mathrm{X}_{\mathrm{j}}\right) \forall \mathfrak{j} \neq \mathfrak{i}\right\}
\end{gathered}
$$

Two-exchange operator

$$
\Delta_{2 \mathrm{E}}=\left\{\delta_{2 \mathrm{E}}^{\mathrm{ij}} \mid 1 \leq \mathfrak{i}<\mathfrak{j} \leq \mathfrak{n}\right\}
$$

$$
\delta_{2 \mathrm{E}}^{i j}\left\{\sigma: \sigma^{\prime}\left(X_{i}\right)=\sigma\left(X_{j}\right), \sigma^{\prime}\left(X_{j}\right)=\sigma\left(X_{i}\right) \text { and } \sigma^{\prime}\left(X_{l}\right)=\sigma\left(X_{l}\right) \forall l \neq i, j\right\}
$$

Neighborhood Operators for Partitions or Sets

An assignment can be represented as a partition of objects selected and not selected $s:\{X\} \rightarrow\{C, \bar{C}\}$
(it can also be represented by a bit string)
One-addition operator

$$
\begin{gathered}
\Delta_{1 \mathrm{E}}=\left\{\delta_{1 \mathrm{E}}^{v} \mid v \in \overline{\mathrm{C}}\right\} \\
\delta_{1 \mathrm{E}}^{v}(\mathrm{~s})=\left\{\mathrm{s}: \mathrm{C}^{\prime}=\mathrm{C} \cup v \text { and } \overline{\mathrm{C}}^{\prime}=\overline{\mathrm{C}} \backslash v\right\}
\end{gathered}
$$

One-deletion operator

$$
\begin{gathered}
\Delta_{1 \mathrm{E}}=\left\{\delta_{1 \mathrm{E}}^{v} \mid v \in \mathrm{C}\right\} \\
\delta_{1 \mathrm{E}}^{v}(\mathrm{~s})=\left\{\mathrm{s}: \mathrm{C}^{\prime}=\mathrm{C} \backslash v \text { and } \overline{\mathrm{C}}^{\prime}=\overline{\mathrm{C}} \cup v\right\}
\end{gathered}
$$

Swap operator

$$
\begin{aligned}
\Delta_{1 \mathrm{E}} & =\left\{\delta_{1 \mathrm{E}}^{v} \mid v \in \mathrm{C}, \mathrm{u} \in \overline{\mathrm{C}}\right\} \\
\delta_{1 \mathrm{E}}^{v}(\mathrm{~s})=\left\{\mathrm{s}: \mathrm{C}^{\prime}\right. & \left.=\mathrm{C} \cup u \backslash v \text { and } \overline{\mathrm{C}}^{\prime}=\overline{\mathrm{C}} \cup v \backslash u\right\}
\end{aligned}
$$

