Totally Unimodular Matrices
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Totally Unimodular Matrices

Assuming all entries of A and b are integral

Whendoes Ax = b has an integral solution x?

By Cramer’s rule

det( AY)

Ar=b<—= = A lbe= Vi g, =
T T 1 X det(A)

where Al is the matrix with each column is equal to the

corresponding column in A except the i-th column is equal to b.

x would be integral if det(A) is equal to +1 or -1.




Totally Unimodular Matrices

A matrix A € Z™*"™ is totally unimodular if the determinant

of each square submatrix of A is 0, -1, or +1.

Theorem 1: If A is totally unimodular,

then every vertex solution of Ax > b g integral.

Proof (follows from previous slides):

1. a vertex solution is defined by a set of n linearly independent tight inequalities.
Let A’ denote the (square) submatrix of A which corresponds to those inequalities.
Then A’x = b’, where b’ consists of the corresponding entries in b.

Since A is totally unimodular, det(A) = 1 or -1.
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By Cramer’s rule, x is integral.




Example of Totally Unimodular Matrices

A totally unimodular matrix must have every entry equals to +1,0,-1.
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And so we see that x must be an integral solution.




Example of Totally Unimodular Matrices

is not a totally unimodular matrix,
as its determinant is equal to 2.
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X is not necessarily an integral solution.
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Totally Unimodular Matrices
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Theorem 2: If A is totally unimodular,

then both the primal and dual programs are integer programs.

Proof: if A is totally unimodular, then so is it’s transpose.




Application 1: Bipartite Graphs

Let A be the incidence matrix of a bipartite graph.
Each row i represents a vertex v(i),
and each column j represents an edge e(j).

A(ij) = 1 if and only if edge €(j) is incident to v(i).
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Application 1: Bipartite Graphs

We’'ll prove that the incidence matrix A of a bipartite graph is totally unimodular.

Consider an arbitrary square submatrix A’ of A.
Our goal is to show that A’ has determinant -1,0, or +1.

Case 1: A’ has a column with only O. Then det(A")=0.

Case 2: A’ has a column with only one 1.

Al =

0O A" And so does A’

( 1 ol ) By induction, A” has determinant -1,0, or +1.



Application 1: Bipartite Graphs

Case 3: Each column of A’ has exactly two 1.

up +1
We can write A’ = A
Adown r

Since the graph is bipartite, each column has one 1 in AY and one 1 in AdoW"

So, by multiplying +1 on the rows in AUP and -1 on the columns in A%°%",
we get that the rows are linearly dependent, and thus det(A’)=0, and we’re done.
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Application 1: Bipartite Graphs

Maximum bipartite matching

max Z Le

GEE(G) max x-1
Z re < 1 @ =1
665(’0) Le Z 0
Te > O

Incidence matrix of a bipartite graph,
hence totally unimodular,
and so yet another proof that this LP is integral.




Application 1: Bipartite Graphs

Maximum general matching

MaxXx Z Le
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= O

The linear program for general matching does not
come from a totally unimodular matrix, and this is why
Edmonds’ result is regarded as a major breakthrough.
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Application 1: Bipartite Graphs
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Theorem 2: If A is totally unizgoduldr,

then both the primal and dual pragrams are integer programs.
Maximum matching <= aximum fractional matching <=
minimum fractional vertex cover <= minimum vertex cover

Theorem 2 show that the first and the last inequalities are equalites.
The LP-duality theorem shows that the second inequality is an equality.
And so we have maximum matching = minimum vertex cover.




Application 2: Directed Graphs

Let A be the incidence matrix of a directed graph.
Each row i represents a vertex v(i),

and each column j represents an edge e(j).

* A(ij) = +1 if vertex v(i) is the tail of edge e(j).

* A(ij) = -1 if vertex v(i) is the head of edge e(j).

* A(ij) = 0 otherwise.

The incidence matrix A of a directed graph is totally unimodular.

Consequences:
(2) The max-flow problem (even min-cost flow) is polynomial time solvable.
(3) Max-flow-min-cut theorem follows from the LP-duality theorem.




Simplex Method

X3
Je Simplex Algorithm:
* Start from an arbitrary vertex.
* optimal * Move to one of its neighbours
solution
which improves the cost. lterate.

Xq

For combinatorial problems, we know that vertex solutions correspond
to combinatorial objects like matchings, stable matchings, flows, etc.

So, the simplex algorithm actually defines a combinatorial algorithm for these problems.




Simplex Method

For example, if you consider the bipartite matching polytope and
run the simplex algorithm, you get the augmenting path algorithm.

The key is to show that two adjacent vertices are differed by an augmenting path.

Recall that a vertex solution is the unique solution of n linearly
independent inequalities. So, moving along an edge in the polytope
means to replace one tight inequality by another one. There is one
degree of freedom and this corresponds to moving along an edge.




Summary

How to model a combinatorial problem as a linear program.

See the geometric interpretation of linear programming.

How to prove a linear program gives integer optimal solutions?

Prove that every vertex solution is integral.

v' By convex combination method.

v’ By linear independency of tight inequalities.
v’ By totally unimodular matrices.

v’ By shifting technique.




Polynomial Time Solvable Problems

Weighted Bipartite matchings

Stable matchifyipartite matchingS\

General matchings

Maximum flows

hortest paths
Minimum spanning trees

Minimum Cost Matroid intersection

/

Packing directed trees Connectivity augmentation
Linear programming




