Outline

1. Parallel Machine Models

2. Flow Shop
 - Introduction
 - Makespan calculation
 - Johnson’s algorithm
 - Construction heuristics
 - Iterated Greedy
 - Efficient Local Search and Tabu Search

Identical machines

Min makespan, without preemption

\[\text{Pm} | \text{p}_j = 1, \text{M}_j | \text{C}_{\text{max}}: \] least flexible job (LFJ) - least flexible machine (LFM) (optimal if \(\text{M}_j \) are nested)

\[\text{Pm} | \text{p}_j | \text{C}_{\text{max}}: \] LPT heuristic, approximation ratio: \(\frac{4}{3} - \frac{1}{3m} \)

\[\text{P\infty} | \text{prec} | \text{C}_{\text{max}}: \] CPM

\[\text{Pm} | \text{prec} | \text{C}_{\text{max}}: \] strongly NP-hard, LNS heuristic (non optimal)
Identical machines

Min makespan, with preemption

\[Pm \mid \| C_{\text{max}} \] Not NP-hard:

- Linear Programming (exercise)

\[LWB = \max \left\{ p_1, \sum_{j=1}^{n} \frac{p_j}{m} \right\} \]

- Construction based on \(LWB \)

- Dispatching rule: longest remaining processing time (LRPT)
 optimal in discrete time

Uniform machines

Min makespan, with preemption

\[Qm \mid \text{prmp} \mid C_{\text{max}} \] Not NP-hard:

- Construction based on

\[LWB = \max \left\{ \frac{p_1}{v_1}, \frac{p_1 + p_2}{v_1 + v_2}, \ldots, \frac{\sum_{j=1}^{n} p_j}{\sum_{j=1}^{n} v_j} \right\} \]

- Dispatching rule: longest remaining processing time on the fastest machine first (processor sharing)
 optimal in discrete time
Unrelated machines

\(R \parallel \sum_j C_j \) is NP-hard
Solved by local search methods.

- Solution representation
 - a collection of \(m \) sequences, one for each job

Recall that \(1 \parallel \sum w_j C_j \) is solvable in \(O(n \log n) \)
Unrelated machines

\(R || \sum_j C_j \) is NP-hard
Solved by local search methods.

- Solution representation
 - a collection of \(m \) sequences, one for each job
 - recall that \(1 \mid \sum w_j C_j \) is solvable in \(O(n \log n) \)
 - indirect representation
 assignment of jobs to machines
 the sequencing is left to the optimal SWPT rule
- Neighborhood: one exchange, swap

Evaluation function. How costly is the computation?

Outline

1. Parallel Machine Models
2. Flow Shop
 - Introduction
 - Makespan calculation
 - Johnson’s algorithm
 - Construction heuristics
 - Iterated Greedy
 - Efficient Local Search and Tabu Search

1. Parallel Machine Models
2. Flow Shop
 - Introduction
 - Makespan calculation
 - Johnson’s algorithm
 - Construction heuristics
 - Iterated Greedy
 - Efficient Local Search and Tabu Search
Flow Shop

General Shop Scheduling:
- $J = \{1, \ldots, N\}$ set of jobs; $M = \{1, 2, \ldots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, \ldots, n_j\}$ set of operations for each job
- p_{ij} processing times of operations O_{ij}

Flow Shop

General Shop Scheduling:
- $J = \{1, \ldots, N\}$ set of jobs; $M = \{1, 2, \ldots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, \ldots, n_j\}$ set of operations for each job
- p_{ij} processing times of operations O_{ij}
- $\mu_{ij} \subseteq M$ machine eligibilities for each operation

Parallel Machine Models

Flow Shop

Introduction

Makespan Problems

Johnson's algorithm

Construction heuristics

Iterated Greedy

Efficient LS and TS
Flow Shop

General Shop Scheduling:
- \(J = \{1, \ldots, N\} \) set of jobs; \(M = \{1, 2, \ldots, m\} \) set of machines
- \(J_j = \{O_{ij} \mid i = 1, \ldots, n_j\} \) set of operations for each job
- \(p_{ij} \) processing times of operations \(O_{ij} \)
- \(\mu_{ij} \subseteq M \) machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time,
 one machine processing each job at a time
- \(C_j \) completion time of job \(j \)

Flow Shop

General Shop Scheduling:
- \(J = \{1, \ldots, N\} \) set of jobs; \(M = \{1, 2, \ldots, m\} \) set of machines
- \(J_j = \{O_{ij} \mid i = 1, \ldots, n_j\} \) set of operations for each job
- \(p_{ij} \) processing times of operations \(O_{ij} \)
- \(\mu_{ij} \subseteq M \) machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time,
 one machine processing each job at a time
- \(C_j \) completion time of job \(j \)

Flow Shop

Find feasible schedule that minimize some regular function of \(C_j \)
Flow Shop

General Shop Scheduling:
- \(J = \{1, \ldots, N\} \) set of jobs; \(M = \{1, 2, \ldots, m\} \) set of machines
- \(J_j = \{O_{ij} \mid i = 1, \ldots, n_j\} \) set of operations for each job
- \(p_{ij} \) processing times of operations \(O_{ij} \)
- \(\mu_{ij} \subseteq M \) machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- \(C_j \) completion time of job \(j \)
- Find feasible schedule that minimize some regular function of \(C_j \)

Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>(j_1)</th>
<th>(j_2)</th>
<th>(j_3)</th>
<th>(j_4)</th>
<th>(j_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{1,j_1})</td>
<td>5 5 3 6 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{2,j_1})</td>
<td>4 4 2 4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{3,j_1})</td>
<td>4 4 3 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{4,j_1})</td>
<td>3 6 3 2 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Shop

General Shop Scheduling:
- \(J = \{1, \ldots, N\} \) set of jobs; \(M = \{1, 2, \ldots, m\} \) set of machines
- \(J_j = \{O_{ij} \mid i = 1, \ldots, n_j\} \) set of operations for each job
- \(p_{ij} \) processing times of operations \(O_{ij} \)
- \(\mu_{ij} \subseteq M \) machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- \(C_j \) completion time of job \(j \)
- Find feasible schedule that minimize some regular function of \(C_j \)

Flow Shop Scheduling:
- \(\mu_{ij} = l, l = 1, 2, \ldots, m \)
- precedence constraints: \(O_{ij} \rightarrow O_{i+1,j}, i = 1, 2, \ldots, n \) for all jobs

Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>(j_1)</th>
<th>(j_2)</th>
<th>(j_3)</th>
<th>(j_4)</th>
<th>(j_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{1,j_2})</td>
<td>5 5 3 6 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{2,j_2})</td>
<td>4 4 2 4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{3,j_2})</td>
<td>4 4 3 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{4,j_2})</td>
<td>3 6 3 2 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

schedule representation \(\pi_1, \pi_2, \pi_3, \pi_4 \):
Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>j₁</th>
<th>j₂</th>
<th>j₃</th>
<th>j₄</th>
<th>j₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁,jₖ</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>p₂,jₖ</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p₃,j₆</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>p₄,j₆</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

schedule representation
π₁, π₂, π₃, π₄:
π₁ : O₁₁, O₁₂, O₁₃, O₁₄
π₂ : O₂₁, O₂₂, O₂₃, O₂₄
π₃ : O₃₁, O₃₂, O₃₃, O₃₄
π₄ : O₄₁, O₄₂, O₄₃, O₄₄

Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>j₁</th>
<th>j₂</th>
<th>j₃</th>
<th>j₄</th>
<th>j₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁,jₖ</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>p₂,jₖ</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p₃,j₆</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>p₄,j₆</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

schedule representation
π₁, π₂, π₃, π₄:
π₁ : O₁₁, O₁₂, O₁₃, O₁₄
π₂ : O₂₁, O₂₂, O₂₃, O₂₄
π₃ : O₃₁, O₃₂, O₃₃, O₃₄
π₄ : O₄₁, O₄₂, O₄₃, O₄₄

Outline

1. Parallel Machine Models
2. Flow Shop

Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>j₁</th>
<th>j₂</th>
<th>j₃</th>
<th>j₄</th>
<th>j₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁,jₖ</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>p₂,jₖ</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p₃,j₆</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>p₄,j₆</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

schedule representation
π₁, π₂, π₃, π₄:
π₁ : O₁₁, O₁₂, O₁₃, O₁₄
π₂ : O₂₁, O₂₂, O₂₃, O₂₄
π₃ : O₃₁, O₃₂, O₃₃, O₃₄
π₄ : O₄₁, O₄₂, O₄₃, O₄₄

- we assume unlimited buffer
- if same job sequence on each machine ➔ permutation flow shop
Directed Graph Representation

Given a sequence: operation-on-node network, jobs on columns, and machines on rows

Recursion for C_{max}

$$C_{i,\pi(1)} = \sum_{l=1}^{i} p_{l,\pi(1)}$$

$$C_{1,\pi(j)} = \sum_{l=1}^{j} p_{l,\pi(l)}$$

$$C_{i,\pi(j)} = \max\{C_{i-1,\pi(j)}, C_{i,\pi(j-1)}\} + p_{i,\pi(j)}$$

Computation cost?

Example

<table>
<thead>
<tr>
<th>jobs</th>
<th>j_1</th>
<th>j_2</th>
<th>j_3</th>
<th>j_4</th>
<th>j_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{1,j_1}</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>p_{2,j_2}</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p_{3,j_3}</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>p_{4,j_4}</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

$C_{\text{max}} = 34$
corresponds to longest path

Outline

1. Parallel Machine Models

2. Flow Shop
 - Introduction
 - Makespan calculation
 - Johnson’s algorithm
 - Construction heuristics
 - Iterated Greedy
 - Efficient Local Search and Tabu Search

Theorem

There always exist an optimum sequence without change in the first two and last two machines.

Proof: By contradiction.

\[
\begin{align*}
M_1 & \quad \cdots \quad i \quad l \quad \cdots \quad h \quad j \\
M_2 & \quad \cdots \quad i \quad j
\end{align*}
\]

Corollary

\(F_2 \mid \max C \) and \(F_3 \mid \max C \) are permutation flow shop

Note: \(F_3 \mid \max C \) is strongly NP-hard

Intuition:

give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.
F2 | C_{max}

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Constructs a sequence \(T : T(1), \ldots, T(n) \) to process in the same order on both machines by concatenating two sequences:
- a left sequence \(L : L(1), \ldots, L(t) \), and a right sequence \(R : R(t + 1), \ldots, R(n) \), that is, \(T = L \circ R \)

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let \(J \) be the set of jobs to process
Let \(T, L, R = \emptyset \)

Step 1 Find \((i^*, j^*)\) such that \(p_{i^* \cdot j^*} = \min \{ p_{i,j} \mid i \in 1, 2, j \in J \} \)

F2 | C_{max}

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Constructs a sequence \(T : T(1), \ldots, T(n) \) to process in the same order on both machines by concatenating two sequences:
- a left sequence \(L : L(1), \ldots, L(t) \), and a right sequence \(R : R(t + 1), \ldots, R(n) \), that is, \(T = L \circ R \)

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let \(J \) be the set of jobs to process
Let \(T, L, R = \emptyset \)

Step 1 Find \((i^*, j^*)\) such that \(p_{i^* \cdot j^*} = \min \{ p_{i,j} \mid i \in 1, 2, j \in J \} \)

Step 2 If \(i^* = 1 \) then \(L = L \circ \{ i^* \} \)
else if \(i^* = 2 \) then \(R = R \circ \{ i^* \} \)
F2 || \(C_{\text{max}} \)

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Constructs a sequence \(T : T(1), \ldots, T(n) \) to process in the same order on both machines by concatenating two sequences:
a left sequence \(L : L(1), \ldots, L(t) \), and a right sequence \(R : R(t+1), \ldots, R(n) \), that is, \(T = L \circ R \)

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let \(J \) be the set of jobs to process
Let \(T, L, R = \emptyset \)
Step 1 Find \((i^*, j^*)\) such that \(p_{i^*, j^*} = \min \{ p_{ij} | i \in 1, 2, j \in J \} \)
Step 2 If \(i^* = 1 \) then \(L = L \circ \{ i^* \} \)
 else if \(i^* = 2 \) then \(R = R \circ \{ i^* \} \)
Step 3 \(J := J \setminus \{ j^* \} \)
Step 4 If \(J \neq \emptyset \) go to Step 1 else \(T = L \circ R \)

Theorem

The sequence \(T : T(1), \ldots, T(n) \) is optimal.

Proof

- Assume at one iteration of the algorithm that job \(k \) has the min processing time on machine 1. Show that in this case job \(k \) has to go first on machine 1 than any other job selected later.

- By contradiction, show that if in a schedule \(S \) a job \(j \) precedes \(k \) on machine 1 and has larger processing time on 1, then \(S \) is a worse schedule than \(S' \).
- There are three cases to consider.
- Iterate the prove for all jobs in \(L \).
- Prove symmetrically for all jobs in \(R \).
Construction Heuristics (1)

Fm | prmu | Cmax

Slope heuristic
- schedule in decreasing order of $A_j = -\sum_{i=1}^{m} (m - (2i - 1))p_{ij}$

Campbell, Dudek and Smith’s heuristic (1970)
extension of Johnson’s rule to when permutation is not dominant
- recursively create 2 machines 1 and $m - 1$

\[p'_{ij} = \sum_{k=1}^{i} p_{kj} \quad p''_{ij} = \sum_{k=m-i+1}^{m} p_{kj} \]

and use Johnson’s rule
- repeat for all $m - 1$ possible pairings
- return the best for the overall m machine problem

Construction Heuristics (2)

Fm | prmu | Cmax

Nawasz, Enscore, Ham’s heuristic (1983)

Step 1: order in decreasing $\sum_{j=1}^{m} p_{ij}$
Step 2: schedule the first 2 jobs at best
Step 3: insert all others in best position

Implementation in $O(n^2m)$

Implementation in $O(n^2m)$

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs in Step 1 and concluded that the NEH arrangement is the best one for C_{max}.
Outline

1. Parallel Machine Models

2. Flow Shop
 - Introduction
 - Makespan calculation
 - Johnson’s algorithm
 - Construction heuristics
 Iterated Greedy
 Efficient Local Search and Tabu Search

Iterated Greedy

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove \(d \) jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood
 (first improvement, whole evaluation \(O(n^2m) \))

Acceptance Criterion: random walk, best, SA-like

Performance on up to \(n = 500 \times m = 20 \):

- NEH average gap 3.35% in less than 1 sec.
- IG average gap 0.44% in about 360 sec.
Efficient local search for $Fm|prmu|C_{max}$

Tabu search (TS) with insert neighborhood.

TS uses best strategy. ⇔ need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

A sequence $t = (t_1, t_2, \ldots, t_{m-1})$ defines a path in π:

$$C(\pi, t) = \sum_{j=1}^{n} p_{n(j)1} + \sum_{j=t_1}^{t_2} p_{n(j)2} + \cdots + \sum_{j=t_1}^{t_{m-1}} p_{n(j)m}$$

C_{max} expression through critical path:

$$C_{max}(\pi) = \max_{1 \leq t_1 \leq t_2 \leq \cdots \leq t_{m-1} \leq n} \left(\sum_{j=1}^{n} p_{n(j)1} + \sum_{j=t_1}^{t_2} p_{n(j)2} + \cdots + \sum_{j=t_1}^{t_{m-1}} p_{n(j)m} \right)$$
critical path: $\vec{u} = (u_1, u_2, \ldots, u_m): C_{\max}(\pi) = C(\pi, u)$

Block B_k and Internal Block B_{k}^{Int}

Corollary (Elimination Criterion)
If π' is obtained by π by an "internal block insertion" then $C_{\max}(\pi') \geq C_{\max}(\pi)$.

Theorem (Werner, 1992)
Let $\pi, \pi' \in \Pi$, if π' has been obtained from π by an job insert so that $C_{\max}(\pi') < C_{\max}(\pi)$ then in π':

a) at least one job $j \in B_k$ precedes job $\pi(u_{k-1})$, $k = 1, \ldots, m$

b) at least one job $j \in B_k$ succeeds job $\pi(u_k)$, $k = 1, \ldots, m$
Corollary (Elimination Criterion)

If \(\pi' \) is obtained by \(\pi \) by an “internal block insertion” then

\[
C_{\text{max}}(\pi') \geq C_{\text{max}}(\pi).
\]

Hence we can restrict the search to where the good moves can be:

Further speedup: Use of lower bounds in delta evaluations:
Let \(\delta_{x,u_k} \) indicate insertion of \(x \) after \(u_k \) (move of type \(ZR_k(\pi) \))

\[
\Delta(\delta_{x,u_k}) = \begin{cases} P\pi(x,k+1) - P\pi(u_k),k+1 & x \neq u_k-1 \\ P\pi(x,k+1) - P\pi(u_k),k+1 + P\pi(u_{k-1},k-1) - P\pi(x),k-1 & x = u_k-1 \end{cases}
\]

That is, add and remove from the adjacent blocks

It can be shown that:

\[
C_{\text{max}}(\delta_{x,u_k}(\pi)) \geq C_{\text{max}}(\pi) + \Delta(\delta_{x,u_k})
\]

Further speedup: Use of lower bounds in delta evaluations:
Let \(\delta_{x,u_k} \) indicate insertion of \(x \) after \(u_k \) (move of type \(ZR_k(\pi) \))

\[
\Delta(\delta_{x,u_k}) = \begin{cases} P\pi(x,k+1) - P\pi(u_k),k+1 & x \neq u_k-1 \\ P\pi(x,k+1) - P\pi(u_k),k+1 + P\pi(u_{k-1},k-1) - P\pi(x),k-1 & x = u_k-1 \end{cases}
\]

That is, add and remove from the adjacent blocks

It can be shown that:

\[
C_{\text{max}}(\delta_{x,u_k}(\pi)) \geq C_{\text{max}}(\pi) + \Delta(\delta_{x,u_k})
\]

Theorem (Nowicki and Smutnicki, 1996, EJOR)

The neighborhood thus defined is connected.
Metaheuristic details:

Prohibition criterion:
an insertion δ_{x,u_k} is tabu if it restores the relative order of $\pi(x)$ and $\pi(x+1)$.

Tabu length: $TL = 6 + \left\lceil \frac{n}{10m} \right\rceil$

Perturbation

- perform all inserts among all the blocks that have $\Delta < 0$
- activated after MaxIdleIter idle iterations

Tabu Search: the final algorithm:

Initialization: $\pi = \pi_0$, $C^* = C_{max}(\pi)$, set iteration counter to zero.
Searching: Create UR_k and UL_k (set of non tabu moves)
Selection: Find the best move according to lower bound Δ.
Apply move. Compute true $C_{max}(\delta(\pi))$.
If improving compare with C^* and in case update. Else increase number of idle iterations.

Perturbation: Apply perturbation if MaxIdleIter done.
Stop criterion: Exit if MaxIter iterations are done.