[TC11a] O. Titiloye, A. Crispin (2011). Graph Coloring with a Distributed Hybrid Quantum Annealing Algorithm. In J. O'Shea, N. Nguyen, K. Crockett, R. Howlett, L. Jain (eds.), Agent and Multi-Agent Systems: Technologies and Applications, vol. 6682 of Lecture Notes in Computer Science, pp. 553-562. Springer Berlin / Heidelberg. ISBN 978-3-642-21999-3. [ bib | DOI ]
[TC11b] O. Titiloye, A. Crispin (2011). Quantum annealing of the graph coloring problem. Discrete Optimization, vol. 8, no. 2, pp. 376 - 384. [ bib | DOI ]
[LH10] Z. Lü, J.-K. Hao (2010). A memetic algorithm for graph coloring. European Journal of Operational Research, vol. 203, no. 1, pp. 241 - 250. [ bib | DOI ]
[PSZ10] M. Plumettaz, D. Schindl, N. Zufferey (2010). Ant Local Search and its efficient adaptation to graph colouring. Journal of Operational Research Society, vol. 61, no. 5, pp. 819 - 826. [ bib | DOI ]
[PHK10] D. C. Porumbel, J.-K. Hao, P. Kuntz (2010). An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring. Computers & Operations Research, vol. 37, pp. 1822 - 1832. [ bib | DOI ]
[XL09] X.-F. Xie, J. Liu (2009). Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, vol. 18, no. 2, pp. 99-123. [ bib | DOI ]
[PHK09] D. Porumbel, J.-K. Hao, P. Kuntz (2009). Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms. In 9th European Conference on Evolutionary Computation in Combinatorial Optimisation (Evocop 2009). Tübingen, Germany. [ bib | .pdf ]
[BNPP08] T. N. Bui, T. H. Nguyen, C. M. Patel, K.-A. T. Phan (2008). An ant-based algorithm for coloring graphs. Discrete Applied Mathematics, vol. 156, no. 2, pp. 190-200. [ bib | DOI ]
[MMT08] E. Malaguti, M. Monaci, P. Toth (2008). A Metaheuristic Approach for the Vertex Coloring Problem. INFORMS Journal on Computing, vol. 20, no. 2, pp. p302 - 316. [ bib | DOI | http ]
[DT07] K. A. Dowsland, J. M. Thompson (2007). An improved ant colony optimisation heuristic for graph colouring. Discrete Applied Mathematics. In Press, Corrected Proof. [ bib | DOI ]
[TW07] E.-G. Talbi, B. Weinberg (2007). Breaking the search space symmetry in partitioning problems: An application to the graph coloring problem. Theoretical Computer Science, vol. 378, no. 1, pp. 78 - 86. [ bib | DOI ]
[CGG05] C. Croitoru, O. Gheorghies, A. Gheorghies (2005). An Ordering-Based Genetic Approach to Graph Coloring. Tech. Rep. TR 05-03, “Al.I.Cuza” University of Iasi, Faculty of Computer Science. [ bib ]
[GPB03] C. A. Glass, A. Prügel-Bennett (2003). Genetic Algorithms for Graph Colouring: Exploration of Galinier and Hao's Algorithm. Journal of Combinatorial Optimization, vol. 7, no. 3, pp. 229-236. [ bib ]
[BP02] T. N. Bui, C. M. Patel (2002). An Ant System Algorithm for Coloring Graphs. In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 83-91. Ithaca, New York, USA. [ bib ]
[CLGA02] C. Croitoru, H. Luchian, O. Gheorghies, A. Apetrei (2002). A New Genetic Graph Coloring Heuristic. In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 63-74. Ithaca, New York, USA. [ bib ]
[GHZ02] P. Galinier, A. Hertz, N. Zufferey (2002). Adaptive Memory Algorithms for Graph Colouring. In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 75-82. Ithaca, New York, USA. Also available as Technical Report G-2003-35, Les Cachiers du GERAD. [ bib ]
[FLS01] D. Fotakis, S. D. Likothanassis, S. Stefanakos (2001). An Evolutionary Annealing Approach to Graph Coloring. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, H. Tijink (eds.), Applications of Evolutionary Computing, EvoWorkshops 2001, vol. 2037 of Lecture Notes in Computer Science, pp. 120-129. Springer. [ bib ]
[LF01] L. A. N. Lorena, J. C. Furtado (2001). Constructive Genetic Algorithm for Clustering Problems. Evolutionary Computation, vol. 9, no. 3, pp. 309-328. [ bib ]
[MD00] A. Marino, R. I. Damper (2000). Breaking the Symmetry of the Graph Colouring Problem with Genetic Algorithms. In D. Whitley (ed.), Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, pp. 240-245. Las Vegas, Nevada, USA. [ bib ]
[GH99] P. Galinier, J. Hao (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, vol. 3, no. 4, pp. 379-397. [ bib | DOI ]
[DH98] R. Dorne, J. Hao (1998). A New Genetic Local Search Algorithm for Graph Coloring. In A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel (eds.), Parallel Problem Solving from Nature - PPSN V, 5th International Conference, vol. 1498 of Lecture Notes in Computer Science, pp. 745-754. Springer Verlag, Berlin, Germany. [ bib ]
[EHH98] A. E. Eiben, J. K. V. D. Hauw, J. I. V. Hemert (1998). Graph Coloring with Adaptive Evolutionary Algorithms. Journal of Heuristics, vol. 4, no. 1, pp. 25-46. [ bib | DOI ]
[DH97] C. D., A. Hertz (1997). Ants Can Colour Graphs. Journal of the Operational Research Society, vol. 48, pp. 295-305. [ bib ]
[Mor96] C. Morgenstern (1996). Distributed Coloration Neighborhood Search. vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 335-357. American Mathematical Society, Providence, RI, USA. [ bib ]
[FF96] C. Fleurent, J. Ferland (1996). Genetic and Hybrid Algorithms for Graph Coloring. Annals of Operations Research, vol. 63, pp. 437-464. [ bib ]
[CHD95] D. Costa, A. Hertz, O. Dubuis (1995). Embedding of a Sequential Procedure within an Evolutionary Algorithm for Coloring Problems in Graphs. Journal of Heuristics, vol. 1, no. 1, pp. 105-128. [ bib ]
[Dav91] L. Davis (1991). Order-based Genetic Algorithms and the Graph Coloring Problem. In Handbook of Genetic Algorithms, pp. 72-90. Van Nostrand Reinhold; New York. [ bib ]