Database Design
and Programming

Peter Schneider-Kamp

DM 505, Spring 2009, 3 Quarter

Course Organisation

= Literature

= Database Systems.: The Complete Book
= Evaluation

= Project and 1-day take-home exam, 7 scale
= Project

= Design and implementation of a database
using PostgreSQL and JDBC

= Schedule
= 4/2 lectures a week, 2/4 exercises a week

Course Organisation

= Literature
= Database Systems.: The Complete Book
= Book has not arrived at the book store yet ®
= Chapters 1 & 2 available online
= Chapter 5.1 as copies
= “drop ship” from the US (January 29)

(Preliminary) Course Schedule

Mon
12-14 U2

Wed
10-12

Thu E
10-12 Y L ey F : L : L

U9 E E L E E E E

= 4/2 lectures, 2/4 exercises
= Lecture and exercise swapped in Week 8
= always U9 except for 1 exercise in U148

4

Where are Databases used?

It used to be about boring stuff:

= Corporate data

= payrolls, inventory, sales, customers,
accounting, documents, ...

= Banking systems
= Stock exchanges

= Airline systems

Where are Databases used?

Today, databases are used in all fields:

= Web backends:
= Web search (Google, Live, Yahoo, ...)
= Social networks (Facebook, ...)
= Blogs, discussion forums

= Integrating data (data warehouses)
= Scientific and medical databases

Why are Databases used?

= Easy to use

= Flexible searching

= Efficiency

= Centralized storage, multi-user access
= Scalability (large amounts of data)

= Security and consistency

= Abstraction (implementation hiding)

= Good data modeling

Why learn about Databases?

= Very widely used
= Part of most current software solutions
= DB expertise is a career asset

= Interesting:
= Mix of different requirements
= Mix of different methodologies
= Integral part of data driven development
= Interesting real word applications

Short History of Databases

= Early 60s: Integrated Data Store, General
Electric, first DBMS, network data model

= Late 60s: Information Management
System, IBM, hierarchical data model

= 1970: E. Codd: Relational data model,
relational query languages, Turing prize

= Mid 70s: First relational DBMSs (IBM
System R, UC Berkeley Ingres, ...)

= 80s: Relational model de facto standard,

Short History of Databases

= 1986: SQL standardized

= 90s: Object-relational databases,
object-oriented databases

= Late 90s: XML databases
= 1999: SQL incorporates some OO features

= 2003, 2006: SQL incorporates support for
XML data

10

Current Database Systems

= DBMS = Database Management System

= Many vendors (Oracle, IBM DB2, MS
SQL Server, MySQL, PostgreSQL, .. .)

= All rather similar

= Very big systems, but easy to use

= Common features:
= Relational model
= SQL as the query language
= Server-client architecture .

Transactions

= Groups of statements that need to be
executed together

= Transferring money between accounts

= Need to subtract amount from 15t account
= Need to add amount to 2" account

= Money must not be lost!

= Money should not be created!

12

ACID

Required properties for transactions

= “A" for “atomicity™ — all or nothing of
transactions

= "C" for “consistency" — constraints hold
before and after each transaction

= "T" for “isolation™ — illusion of sequential
execution of each transaction

= "D" for “durability®™ — effect of a
completed transaction may not get lost

Database Develolpment

= Requirement specification (not here)
= Data modeling

= Database modeling

= Application programming

= Database tuning

14

Database Course Contents

= E/R-model for data modeling
= Relational data model
= SQL language
= Application programming (JDBC)
= Basic implementation principles
= DB tuning
Note: DM 505 + SQL course
DM 505 # PostgreSQL course

15

Data Model

What is a Data Model?

1. Mathematical representation of data
= relational model = tables
= semistructured model = trees/graphs

2. Operations on data
3. Constraints

17

A Relation is a Table

Attributes
(column \\

headers) name manf
Tuples ™ Odense Classic Albani
(rows) 1 Erdinger WeiBbier | Erdinger
Beers
Relation
Nname

Note: Order of attributes and rows
is irrelevant (sets / bags)

18

Schemas

» Relation schema =
relation name and attribute list
= Optionally: types of attributes

= Example: Beers(name, manf) or
Beers(name: string, manf: string)

» Database = collection of relations

= Database schema = set of all relation
schemas in the database

19

Why Relations?

= Very simple model
= Often matches how we think about data

= Abstract model that underlies SQL,
the most important database language
today

20

Our Running Example

Beers(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

= Underline = key (tuples cannot have
the same value in all key attributes)

= Excellent example of a constraint

21

Database Schemas in SQL

= SQL is primarily a query language, for
getting information from a database
= But SQL also includes a data-definition

component for describing database
schemas

22

Creating (Declaring) a Relation

= Simplest form is:
CREATE TABLE <name> (
<list of elements>

),
= To delete a relation:
DROP TABLE <name>;

23

Elements of Table Declarations

= Most basic element:
an attribute and its type

= The most common types are:
= INT or INTEGER (synonyms)
= REAL or FLOAT (synonyms)

= CHAR(n) = fixed-length string of n
characters

= VARCHAR(n) = variable-length string of up
to n characters

24

Example: Create Table

CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20),
price REAL

) ;

25

SQL Values

= Integers and reals are represented as
you would expect

= Strings are too, except they require
single quotes
= Two single quotes = real quote, e.qg.,
"Trader Joe’’s Hofbrau Bock’
= Any value can be NULL
= (like Objects in Java)

26

Dates and Times

= DATE and TIME are types in SQL
= The form of a date value is:

DATE ‘yyyy-mm-dd’

= Example: DATE ’2009-02-04" for
February 4, 2009

27

Times as Values

= The form of a time value is:

TIME ‘hh:mm:ss’
with an optional decimal point and
fractions of a second following

= Example: TIME ’15:30:02.5" =
two and a half seconds after 15:30

28

Declaring Keys

= An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE

= Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list

= There are a few distinctions to be
mentioned later

29

Declaring Single-Attribute Keys

= Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

= Example:
CREATE TABLE Beers (
name CHAR (20) UNIQUE,
mant CHAR (20)

) ;

30

Declaring Multiattribute Keys

= A key declaration can also be another
element in the list of elements of a
CREATE TABLE statement

= This form is essential if the key consists
of more than one attribute

= May be used even for one-attribute keys

31

Example: Multiattribute Key

= The bar and beer together are the key for Sells:
CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20) ,
price REAL,
PRIMARY KEY (bar, beer)

32

PRIMARY KEY vs. UNIQUE

. There can be only one PRIMARY KEY
for a relation, but several UNIQUE
attributes

. No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But

attributes declared UNIQUE may have
NULL’s, and there may be several
tuples with NULL

33

Changing a Relation Schema

= To delete an attribute:
ALTER TABLE <name> DROP <attribute>;
= To add an attribute:
ALTER TABLE <name> ADD <element>;
= Examples:
ALTER TABLE Beers ADD prize CHAR(10);
ALTER TABLE Drinkers DROP phone;

34

Semistructured Data

= Another data model, based on trees
= Motivation: flexible representation of data

= Motivation: sharing of documents among
systems and databases

35

Graphs of Semistructured Data

= Nodes
= Labels

= objects
on arcs (like attribute names)

= Atomic values at leaf nodes (nodes with
no arcs out)

= Flexibi
= Labe
= Num

ity: no restriction on:
s out of a node

per of successors with a given label

36

Example: Data Graph

root Notice a
d new kind
of data

& @

@ \ ~ The beer object
DS

For Odense Classic
The bar object

For Cafe Chino

37

XML

= XML = Extensible Markup Language

= While HTML uses tags for formatting
(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”)

= Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents

38

XML Documents

= Start the document with a declaration,
surrounded by <?xml ... ?>

= Typical:

<?xml version = “1.0” encoding
= “Yutf-8" ?>

= Document consists of one
surrounding nested tags

39

Tags

= Tags, as in HTML, are normally
matched pairs, as <FOO> ... </FOO>

= Optional single tag <FOO/>
= Tags may be nested arbitrarily
= XML tags are case sensitive

40

Example: an XML Document

<?xml version = "1.0” encoding = “utf-8" ?> A NAME

<BARS> subobject

<BAR><NAME>Cafe Chino</NAME>
<BEER><NAME>0Odense Classic</NAME>

<PRICE>20</PRICE></BEER> ™
<BEER><NAME>Erdinger WeiBbier</NAMlx

<PRICE>35</PRICE></BEER> A BEER
</BAR> subobject
<BAR> ...

</BARS>

41

Attributes

= Like HTML, the opening tag in XML can
have attribute = value pairs

= Attributes also allow linking among
elements (discussed later)

42

Bars, Using Attributes

<?xml version = “1.0” encoding = “utf-8"” ?>
<BARS>
<BAR name < “Cafe Chino">
<BEER name\. = “Odense Classic” irice =20 />

<BEER\name = “Erdinger Weilbi

r“ pricg = 35|/>
</BAR> \ /
<BAR> ...

name and Notice Beer elements
</BARS> Pricearc have only opening tags

attributes with attributes.

DTD’s (Document Type Definitions)

= A grammatical notation for describing
allowed use of tags.

= Definition form:

<!DOCTYPE <root tag> |
<!ELEMENT <name> (<components>) >
. . . more elements . . .

] >

44

Example: DTD

A BARS object has
<IDOCTYPE BARS [zero or more BAR's

<IELEMENT[BARS (BAR¥)> "0
<IELEMENT BAR (NAME, BEER+)> A gag has one
<IELEMENT([NAME (#PCDATA)> ™. NAME and one

or more BEER

<!ELEMENT BEER (NAME, PRICE)> subobjects.

<IELEMENT |PRICE (#PCDATA);\
/ A BEER has a

NAME and PRICE NAME and a
are HTML text. PRICE.

45

Attributes

= Opening tags in XML can have
attributes

= Ina DTD,
<!ATTLISTE...>

declares an attribute for element E,
along with its datatype

46

<!ELEMENT BEER

<!ATTLIST name CDATA|#REQUIRED,

mant

Character
string

Example use:

: Attributes

EMPTYb

No closing
tag or
subelements

d

CDATA

#TMPLIED

|

>

Required = "must occur”;
Implied = “optional

<BEER name="0dense Classic” />

47

Summary 1

Things you should know now:

= Basic ideas about databases and DBMSs
= What is a data model?

= Idea and Details of the relational model
= SQL as a data definition language

Things given as background:
= History of database systems
= Semistructured data model 8

Relational Algebra

What is an “Algebra”

= Mathematical system consisting of:

= Operands — variables or values from which
new values can be constructed

= Operators — symbols denoting procedures
that construct new values from given
values

= Example:
= Integers ..., -1, 0, 1, ... as operands
= Arithmetic operations +/- as operators

50

What is Relational Algebra?

= An algebra whose operands are
relations or variables that represent
relations

= Operators are designed to do the most
common things that we need to do with
relations in a database

= The result is an algebra that can be used
as a query language for relations

51

Core Relational Algebra

Union, intersection, and difference

= Usual set operations, but both operands
must have the same relation schema

Selection: picking certain rows
Projection: picking certain columns

Products and joins: compositions of
relations

Renaming of relations and attributes

52

Selection

* R = 0c(Ry)

= C is a condition (as in "“if” statements) that
refers to attributes of R,

= R is all those tuples of R, that satisfy C

53

Example: Selection

Relation Sells:

bar beer price
Cafe Chino| Od. Cla. 20
Cafe Chino| Erd. Wei. 35
Cafe Bio Od. Cla. 20
Bryggeriet | Pilsener 31

ChinoMenu = O, vcafe chino(S€EIIS):

bar beer price
Cafe Chino| Od. Cla. 20
Cafe Chino| Erd. Wei. 35

Projection

" Ry =TT, (Ry)
= L is a list of attributes from the schema of R,

= R, is constructed by looking at each tuple of R,
extracting the attributes on list L, in the order
specified, and creating from those components
a tuple for R,

= Eliminate duplicate tuples, if any

55

Example: Projection

Relation Sells:
bar beer price
Cafe Chino| Od. Cla. 20
Cafe Chino| Erd. Wei. 35
Cafe Bio Od. Cla. 20
Bryggeriet | Pilsener 31
Prices := TTpee price(SEIIS):
beer price
Od. Cla. 20
Erd. Wei.| 35
Pilsener 31

56

Extended Projection

Using the same TT, operator, we allow
the list L to contain arbitrary
expressions involving attributes:

1. Arithmetic on attributes, e.qg., A+B->C

2. Duplicate occurrences of the same
attribute

57

Example: Extended Projection

R = (|A

1
3

B
2
4

Taig->caa (R) =

\Iwn

—t
W=
—

| —
(@0 >
N

58

Product

" R;:=R; XR,
= Pair each tuple t; of R, with each tuple t, of R,
= Concatenation t,t, is a tuple of R,

= Schema of R; is the attributes of R; and then
R,, in order

= But beware attribute A of the same name in R,
and R,: use R;.A and R,.A

59

= R, X R,

R

Example

O 0O WO O

LD INOYLWND N O

R,.B,| R,.B] C |)

ANAN AN X S

T|lH =M MM
N’

oM

oY

~ ~~
D] (Yoo
Tl ™M |Oltn N O
N’ N’

—i (@\]

a'd oY

60

Theta-Join

= R; =Ry X-R,
= Take the product R; X R,
= Then apply O to the result

= As for O, C can be any boolean-valued
condition
= Historic versions of this operator allowed

only A 6 B, where 0 is =, <, etc.; hence
the name "“theta-join”

61

Example: Theta Join

Sells(| bar, | beer, | price|) Bars(| name,| addr
C.Ch.|Od.C. | 20 C.Ch. Reventlo.
C.Ch.|Er.W. | 35 C.Bi. Brandts
C.Bi. |0d.C.| 20 Bryg. Flakhaven
Bryg.|Pils. | 31

BarInfo := Sells [><]Sells.bar= Bars.name Bars

BarInfo(|bar, | beer, | price,| name, addr)
C.Ch. |Od.C. |20 C.Ch. |Reventlo.
C.Ch. |[ErW. (35 C.Ch. |Reventlo.
C.Bi. |0d.C. |20 C.Bi. [Brandts
Bryg. |Pils. |31 Bryg. |Flakhaven

62

Natural Join

= A useful join variant (natural join)
connects two relations by:

= Equating attributes of the same name, and

= Projecting out one copy of each pair of
equated attributes

= Denoted R; := R; DX R,

63

Example: Natural Join

Sells(| bar, | beer, |price|) Bars(| bar, | addr
C.Ch.|Od.Cl. | 20 C.Ch.| Reventlo.
C.Ch.|Er.We.| 35 C.Bi. | Brandts
C.Bi. |0d.Cl. | 20 Bryg.| Flakhaven
Bryg.|Pils. |31

BarInfo := Sells P Bars
Note: Bars.name has become Bars.bar
to make the natural join “work”
BarInfo(|bar, | beer, |price, |addr)
C.Ch. |0d.Cl. |20 Reventlo.
C.Ch. |[ErWe. |35 Reventlo.
C.Bi. |Od.Cl. |20 Prandts
8ryg. |Pils. |31 Flakhaven 64

