
1

Database Design
and Programming

DM 505, Spring 2009, 3rd Quarter

Peter Schneider-Kamp

2

Course Organisation

  Literature
  Database Systems: The Complete Book

  Evaluation
  Project and 1-day take-home exam, 7 scale

  Project
  Design and implementation of a database

using PostgreSQL and JDBC
  Schedule

  4/2 lectures a week, 2/4 exercises a week

3

Course Organisation

  Literature
  Database Systems: The Complete Book
  Book has not arrived at the book store yet 
  Chapters 1 & 2 available online
  Chapter 5.1 as copies
  “drop ship” from the US (January 29)

4

(Preliminary) Course Schedule

  4/2 lectures, 2/4 exercises
  Lecture and exercise swapped in Week 8
  always U9 except for 1 exercise in U148

Week Room 06 07 08 09 10 11 12

Mon
12-14 U9 L L L L L L L

Wed
10-12 U9 E E L E E E E

Thu
10-12 (U9) L E

(U148)
E E L E L

5

Where are Databases used?

It used to be about boring stuff:
  Corporate data

  payrolls, inventory, sales, customers,
accounting, documents, ...

  Banking systems
  Stock exchanges
  Airline systems
  ...

6

Where are Databases used?

Today, databases are used in all fields:
  Web backends:

 Web search (Google, Live, Yahoo, ...)
  Social networks (Facebook, ...)
  Blogs, discussion forums
  ...

  Integrating data (data warehouses)
  Scientific and medical databases
  ...

7

Why are Databases used?

  Easy to use
  Flexible searching
  Efficiency
  Centralized storage, multi-user access
  Scalability (large amounts of data)
  Security and consistency
  Abstraction (implementation hiding)
  Good data modeling

8

Why learn about Databases?

  Very widely used
  Part of most current software solutions
  DB expertise is a career asset
  Interesting:

 Mix of different requirements
 Mix of different methodologies
  Integral part of data driven development
  Interesting real word applications

9

Short History of Databases

  Early 60s: Integrated Data Store, General
Electric, first DBMS, network data model

  Late 60s: Information Management
System, IBM, hierarchical data model

  1970: E. Codd: Relational data model,
relational query languages, Turing prize

  Mid 70s: First relational DBMSs (IBM
System R, UC Berkeley Ingres, ...)

  80s: Relational model de facto standard

10

Short History of Databases

  1986: SQL standardized
  90s: Object-relational databases,

object-oriented databases
  Late 90s: XML databases
  1999: SQL incorporates some OO features
  2003, 2006: SQL incorporates support for

XML data
  ...

11

Current Database Systems

  DBMS = Database Management System
  Many vendors (Oracle, IBM DB2, MS

SQL Server, MySQL, PostgreSQL, . . .)
  All rather similar
  Very big systems, but easy to use
  Common features:

  Relational model
  SQL as the query language
  Server-client architecture

Transactions

  Groups of statements that need to be
executed together

  Example:
  Transferring money between accounts
  Need to subtract amount from 1st account
  Need to add amount to 2nd account
 Money must not be lost!
 Money should not be created!

12

ACID

Required properties for transactions
  “A“ for “atomicity“ – all or nothing of

transactions
  “C“ for “consistency“ – constraints hold

before and after each transaction
  “I“ for “isolation“ – illusion of sequential

execution of each transaction
  “D“ for “durability“ – effect of a

completed transaction may not get lost
13

14

Database Develolpment

  Requirement specification (not here)
  Data modeling
  Database modeling
  Application programming
  Database tuning

15

Database Course Contents

  E/R-model for data modeling
  Relational data model
  SQL language
  Application programming (JDBC)
  Basic implementation principles
  DB tuning
Note: DM 505 ≠ SQL course
Note: DM 505 ≠ PostgreSQL course

Data Model

16

17

What is a Data Model?

1.  Mathematical representation of data
  relational model = tables
  semistructured model = trees/graphs
  ...

2.  Operations on data
3.  Constraints

18

A Relation is a Table

 name manf
 Odense Classic Albani
 Erdinger Weißbier Erdinger
 Beers

Note: Order of attributes and rows
 is irrelevant (sets / bags)

Attributes
(column
headers)

Tuples
(rows)

Relation
 name

19

Schemas

  Relation schema =
 relation name and attribute list

 Optionally: types of attributes
  Example: Beers(name, manf) or

Beers(name: string, manf: string)
  Database = collection of relations
  Database schema = set of all relation

schemas in the database

20

Why Relations?

  Very simple model
  Often matches how we think about data
  Abstract model that underlies SQL,

the most important database language
today

21

Our Running Example

 Beers(name, manf)
 Bars(name, addr, license)
 Drinkers(name, addr, phone)
 Likes(drinker, beer)
 Sells(bar, beer, price)
 Frequents(drinker, bar)

  Underline = key (tuples cannot have
the same value in all key attributes)
  Excellent example of a constraint

22

Database Schemas in SQL

  SQL is primarily a query language, for
getting information from a database

  But SQL also includes a data-definition
component for describing database
schemas

23

Creating (Declaring) a Relation

  Simplest form is:
 CREATE TABLE <name> (
 <list of elements>
);

  To delete a relation:
 DROP TABLE <name>;

24

Elements of Table Declarations

  Most basic element:
an attribute and its type

  The most common types are:
  INT or INTEGER (synonyms)
  REAL or FLOAT (synonyms)
  CHAR(n) = fixed-length string of n

characters
  VARCHAR(n) = variable-length string of up

to n characters

25

Example: Create Table

 CREATE TABLE Sells (
 bar CHAR(20),
 beer VARCHAR(20),

 price REAL
);

26

SQL Values

  Integers and reals are represented as
you would expect

  Strings are too, except they require
single quotes
  Two single quotes = real quote, e.g.,
’Trader Joe’’s Hofbrau Bock’

  Any value can be NULL
  (like Objects in Java)

27

Dates and Times

  DATE and TIME are types in SQL
  The form of a date value is:
 DATE ’yyyy-mm-dd’
  Example: DATE ’2009-02-04’ for

February 4, 2009

28

Times as Values

  The form of a time value is:
 TIME ’hh:mm:ss’
with an optional decimal point and
fractions of a second following
  Example: TIME ’15:30:02.5’ =

two and a half seconds after 15:30

29

Declaring Keys

  An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE

  Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list

  There are a few distinctions to be
mentioned later

30

Declaring Single-Attribute Keys

  Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

  Example:
 CREATE TABLE Beers (
 name CHAR(20) UNIQUE,
 manf CHAR(20)
);

31

Declaring Multiattribute Keys

  A key declaration can also be another
element in the list of elements of a
CREATE TABLE statement

  This form is essential if the key consists
of more than one attribute
 May be used even for one-attribute keys

32

Example: Multiattribute Key

  The bar and beer together are the key for Sells:
 CREATE TABLE Sells (
 bar CHAR(20),
 beer VARCHAR(20),

 price REAL,
 PRIMARY KEY (bar, beer)
);

33

PRIMARY KEY vs. UNIQUE

1.  There can be only one PRIMARY KEY
for a relation, but several UNIQUE
attributes

2.  No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But
attributes declared UNIQUE may have
NULL’s, and there may be several
tuples with NULL

34

Changing a Relation Schema

  To delete an attribute:
 ALTER TABLE <name> DROP <attribute>;

  To add an attribute:
 ALTER TABLE <name> ADD <element>;
  Examples:
 ALTER TABLE Beers ADD prize CHAR(10);
 ALTER TABLE Drinkers DROP phone;

35

Semistructured Data

  Another data model, based on trees
  Motivation: flexible representation of data
  Motivation: sharing of documents among

systems and databases

36

Graphs of Semistructured Data

  Nodes = objects
  Labels on arcs (like attribute names)
  Atomic values at leaf nodes (nodes with

no arcs out)
  Flexibility: no restriction on:

  Labels out of a node
  Number of successors with a given label

37

Example: Data Graph

Odense
Classic

Albani

10th 2009

Rev. 53 Cafe
Chino

M’lob

beer beer
bar

manf manf

servedAt

name

name
name

addr

prize

year award

root

The bar object
For Cafe Chino

The beer object
For Odense Classic

Notice a
new kind
of data

38

XML

  XML = Extensible Markup Language
  While HTML uses tags for formatting

(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”)

  Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents

39

XML Documents

  Start the document with a declaration,
surrounded by <?xml … ?>

  Typical:
<?xml version = “1.0” encoding
= “utf-8” ?>

  Document consists of one root tag
surrounding nested tags

40

Tags

  Tags, as in HTML, are normally
matched pairs, as <FOO> … </FOO>
 Optional single tag <FOO/>

  Tags may be nested arbitrarily
  XML tags are case sensitive

<?xml version = “1.0” encoding = “utf-8” ?>
<BARS>

 <BAR><NAME>Cafe Chino</NAME>
 <BEER><NAME>Odense Classic</NAME>
 <PRICE>20</PRICE></BEER>
 <BEER><NAME>Erdinger Weißbier</NAME>
 <PRICE>35</PRICE></BEER>
 </BAR>
 <BAR> …

</BARS>

A BEER
subobject

41

Example: an XML Document

A NAME
subobject

42

Attributes

  Like HTML, the opening tag in XML can
have attribute = value pairs

  Attributes also allow linking among
elements (discussed later)

43

Bars, Using Attributes

<?xml version = “1.0” encoding = “utf-8” ?>
<BARS>

 <BAR name = “Cafe Chino”>
 <BEER name = “Odense Classic” price = 20 />
 <BEER name = “Erdinger Weißbier” price = 35 />
 </BAR>
 <BAR> …

</BARS>
Notice Beer elements
have only opening tags
with attributes.

name and
price are
attributes

44

DTD’s (Document Type Definitions)

  A grammatical notation for describing
allowed use of tags.

  Definition form:
<!DOCTYPE <root tag> [
 <!ELEMENT <name>(<components>)>
 . . . more elements . . .
]>

45

Example: DTD

<!DOCTYPE BARS [
 <!ELEMENT BARS (BAR*)>
 <!ELEMENT BAR (NAME, BEER+)>
 <!ELEMENT NAME (#PCDATA)>
 <!ELEMENT BEER (NAME, PRICE)>
 <!ELEMENT PRICE (#PCDATA)>

]>

A BARS object has
zero or more BAR’s
nested within.

A BAR has one
NAME and one
or more BEER
subobjects.

A BEER has a
NAME and a
PRICE.

NAME and PRICE
are HTML text.

46

Attributes

  Opening tags in XML can have
attributes

  In a DTD,
<!ATTLIST E . . . >
 declares an attribute for element E,
along with its datatype

47

Example: Attributes

<!ELEMENT BEER EMPTY>
 <!ATTLIST name CDATA #REQUIRED,
 manf CDATA #IMPLIED>

No closing
tag or
subelements

Character
string

Required = “must occur”;
Implied = “optional

Example use:
<BEER name=“Odense Classic” />

Summary 1

Things you should know now:
  Basic ideas about databases and DBMSs
  What is a data model?
  Idea and Details of the relational model
  SQL as a data definition language

Things given as background:
  History of database systems
  Semistructured data model 48

Relational Algebra

49

50

What is an “Algebra”

  Mathematical system consisting of:
 Operands – variables or values from which

new values can be constructed
 Operators – symbols denoting procedures

that construct new values from given
values

  Example:
  Integers ..., -1, 0, 1, ... as operands
  Arithmetic operations +/- as operators

51

What is Relational Algebra?

  An algebra whose operands are
relations or variables that represent
relations

  Operators are designed to do the most
common things that we need to do with
relations in a database
  The result is an algebra that can be used

as a query language for relations

52

Core Relational Algebra

  Union, intersection, and difference
  Usual set operations, but both operands

must have the same relation schema
  Selection: picking certain rows
  Projection: picking certain columns
  Products and joins: compositions of

relations
  Renaming of relations and attributes

53

Selection

  R1 := σC (R2)
  C is a condition (as in “if” statements) that

refers to attributes of R2

  R1 is all those tuples of R2 that satisfy C

54

Example: Selection

Relation Sells:
 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35
 Cafe Bio Od. Cla. 20
 Bryggeriet Pilsener 31

ChinoMenu := σbar=“Cafe Chino”(Sells):
 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35

55

Projection

  R1 := πL (R2)
  L is a list of attributes from the schema of R2

  R1 is constructed by looking at each tuple of R2,
extracting the attributes on list L, in the order
specified, and creating from those components
a tuple for R1

  Eliminate duplicate tuples, if any

56

Example: Projection

Relation Sells:
 bar beer price
 Cafe Chino Od. Cla. 20
 Cafe Chino Erd. Wei. 35
 Cafe Bio Od. Cla. 20
 Bryggeriet Pilsener 31

Prices := πbeer,price(Sells):
 beer price
 Od. Cla. 20
 Erd. Wei. 35
 Pilsener 31

57

Extended Projection

  Using the same πL operator, we allow
the list L to contain arbitrary
expressions involving attributes:

1.  Arithmetic on attributes, e.g., A+B->C
2.  Duplicate occurrences of the same

attribute

58

Example: Extended Projection

R = (A B)
 1 2
 3 4

πA+B->C,A,A (R) = C A1 A2
 3 1 1
 7 3 3

59

Product

  R3 := R1 Χ R2

  Pair each tuple t1 of R1 with each tuple t2 of R2
  Concatenation t1t2 is a tuple of R3

  Schema of R3 is the attributes of R1 and then
R2, in order

  But beware attribute A of the same name in R1
and R2: use R1.A and R2.A

60

Example: R3 := R1 Χ R2

 R1(A, B)
 1 2
 3 4

 R2(B, C)
 5 6
 7 8
 9 10

 R3(A, R1.B, R2.B, C)
 1 2 5 6
 1 2 7 8
 1 2 9 10
 3 4 5 6
 3 4 7 8
 3 4 9 10

61

Theta-Join

  R3 := R1 ⋈C R2
  Take the product R1 Χ R2

  Then apply σC to the result

  As for σ, C can be any boolean-valued
condition
  Historic versions of this operator allowed

only A θ B, where θ is =, <, etc.; hence
the name “theta-join”

62

Example: Theta Join

Sells(bar, beer, price) Bars(name, addr)
 C.Ch. Od.C. 20 C.Ch. Reventlo.
 C.Ch. Er.W. 35 C.Bi. Brandts
 C.Bi. Od.C. 20 Bryg. Flakhaven
 Bryg. Pils. 31

 BarInfo := Sells ⋈Sells.bar = Bars.name Bars

 BarInfo(bar, beer, price, name, addr)
 C.Ch. Od.C. 20 C.Ch. Reventlo.
 C.Ch. Er.W. 35 C.Ch. Reventlo.
 C.Bi. Od.C. 20 C.Bi. Brandts
 Bryg. Pils. 31 Bryg. Flakhaven

63

Natural Join

  A useful join variant (natural join)
connects two relations by:
  Equating attributes of the same name, and
  Projecting out one copy of each pair of

equated attributes

  Denoted R3 := R1 ⋈ R2

64

Example: Natural Join
Sells(bar, beer, price) Bars(bar, addr)

 C.Ch. Od.Cl. 20 C.Ch. Reventlo.
 C.Ch. Er.We. 35 C.Bi. Brandts
 C.Bi. Od.Cl. 20 Bryg. Flakhaven
 Bryg. Pils. 31

 BarInfo := Sells ⋈ Bars
Note: Bars.name has become Bars.bar

 to make the natural join “work”

 BarInfo(bar, beer, price, addr)
 C.Ch. Od.Cl. 20 Reventlo.
 C.Ch. Er.We. 35 Reventlo.
 C.Bi. Od.Cl. 20 Brandts
 Bryg. Pils. 31 Flakhaven

