
1

Real SQL Programming

2

SQL in Real Programs

  We have seen only how SQL is used at
the generic query interface – an
environment where we sit at a terminal
and ask queries of a database

  Reality is almost always different:
conventional programs interacting with
SQL

3

Options

1.  Code in a specialized language is
stored in the database itself (e.g.,
PSM, PL/pgsql)

2.  SQL statements are embedded in a
host language (e.g., C)

3.  Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB)

4

Stored Procedures

  PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements

  PSM = a mixture of conventional
statements (if, while, etc.) and SQL

  Lets us do things we cannot do in SQL
alone

5

Procedures in PostgreSQL

CREATE PROCEDURE <name>
([<arguments>]) AS $$
<program>$$ LANGUAGE <lang>;

  PostgreSQL only supports functions:
CREATE FUNCTION <name>

([<arguments>]) RETURNS VOID AS $$
<program>$$ LANGUAGE <lang>;

6

Parameters for Procedures

  Unlike the usual name-type pairs in
languages like Java, procedures use mode-
name-type triples, where the mode can be:
  IN = function uses value, does not change
 OUT = function changes, does not use
  INOUT = both

7

Example: Stored Procedure

  Let’s write a procedure that takes two
arguments b and p, and adds a tuple
to Sells(bar, beer, price) that has bar =
’C.Ch.’, beer = b, and price = p
  Used by Cafe Chino to add to their menu

more easily

Parameters are both
read-only, not changed

The body ---
a single insertion

8

The Procedure

CREATE FUNCTION ChinoMenu (
 IN b CHAR(20),
 IN p REAL

) RETURNS VOID AS $$
INSERT INTO Sells
VALUES(’C.Ch.’, b, p);
$$ LANGUAGE plpgsql;

9

Invoking Procedures

  Use SQL/PSM statement CALL, with the name
of the desired procedure and arguments

  Example:
 CALL ChinoMenu(’Eventyr’, 50);

  Functions used in SQL expressions wherever
a value of their return type is appropriate

  No CALL in PostgreSQL:
 SELECT ChinoMenu(’Eventyr’, 50);

10

Kinds of PL/pgsql statements

  Return statement: RETURN <expression>
returns value of a function
  Like in Java, RETURN terminates the

function execution

  Declare block: DECLARE <name> <type>
used to declare local variables

  Groups of Statements: BEGIN . . . END
  Separate statements by semicolons

11

Kinds of PL/pgsql statements
  Assignment statements:

 <variable> := <expression>;
  Example: b := ’Od.Cl.’;

  Statement labels: give a statement a
label by prefixing a name and a colon

12

IF Statements

  Simplest form:
 IF <condition> THEN
 <statements(s)>
 END IF;

  Add ELSE <statement(s)> if desired, as
 IF . . . THEN . . . ELSE . . . END IF;

  Add additional cases by ELSEIF
<statements(s)>: IF … THEN … ELSEIF …
THEN … ELSEIF … THEN … ELSE … END IF;

13

Example: IF

  Let’s rate bars by how many customers they
have, based on Frequents(drinker,bar)
 <100 customers: ‘unpopular’
  100-199 customers: ‘average’
 >= 200 customers: ‘popular’

  Function Rate(b) rates bar b

Number of
customers of
bar b

Nested
IF statement

14

Example: IF

CREATE FUNCTION Rate (IN b CHAR(20))
 RETURNS CHAR(10) AS $$
 DECLARE cust INTEGER;
 BEGIN
 cust := (SELECT COUNT(*) FROM Frequents
 WHERE bar = b);
 IF cust < 100 THEN RETURN ’unpopular’;
 ELSEIF cust < 200 THEN RETURN ’average’;
 ELSE RETURN ’popular’;
 END IF;
 END;

15

Loops

  Basic form:
 <<<label>>>
LOOP

 <statements>
END LOOP;

  Exit from a loop by:
 EXIT <label> WHEN <condition>

16

Example: Exiting a Loop

<<loop1>> LOOP
 . . .
 EXIT loop1 WHEN ...;
 . . .

END LOOP;
If this statement is executed and
the condition holds ...

... control winds up here

17

Other Loop Forms

  WHILE <condition> LOOP
 <statements>

END LOOP;
  Equivalent to the following LOOP:
 LOOP

 EXIT WHEN NOT <condition>;
 <statements>

END LOOP;

18

Other Loop Forms

  FOR <name> IN <start> TO <end>
LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+1;

END LOOP;

19

Other Loop Forms

  FOR <name> IN REVERSE <start> TO
<end> LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> < <end>;

 <statements>
 <name> := <name> - 1;

END LOOP;

20

Other Loop Forms

  FOR <name> IN <start> TO <end>
BY <step> LOOP

 <statements>
END LOOP;

  Equivalent to the following block:
 <name> := <start>;
 LOOP EXIT WHEN <name> > <end>;

 <statements>
 <name> := <name>+<step>;

END LOOP;

21

Queries

  General SELECT-FROM-WHERE
queries are not permitted in PL/pgsql

  There are three ways to get the effect
of a query:

1.  Queries producing one value can be the
expression in an assignment

2.  Single-row SELECT ... INTO
3.  Cursors

22

Example: Assignment/Query

  Using local variable p and Sells(bar, beer,
price), we can get the price Cafe Chino
charges for Odense Classic by:
 p := (SELECT price FROM Sells
 WHERE bar = ’C.Ch’ AND
 beer = ’Od.Cl.’);

23

SELECT ... INTO

  Another way to get the value of a query
that returns one tuple is by placing INTO
<variable> after the SELECT clause

  Example:
 SELECT price INTO p FROM Sells
 WHERE bar = ’C.Ch.’ AND
 beer = ’Od.Cl.’;

24

Cursors

  A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query

  Declare a cursor c by:
DECLARE c CURSOR FOR <query>;

25

Opening and Closing Cursors

  To use cursor c, we must issue the
command:
 OPEN c;
  The query of c is evaluated, and c is set

to point to the first tuple of the result

  When finished with c, issue command:
 CLOSE c;

26

Fetching Tuples From a Cursor

  To get the next tuple from cursor c,
issue command:
 FETCH FROM c INTO x1, x2,…,xn ;

  The x ’s are a list of variables, one for
each component of the tuples referred
to by c

  c is moved automatically to the next
tuple

27

Breaking Cursor Loops – (1)

  The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched

  A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver

28

Breaking Cursor Loops – (2)

  Many operations returns if a row has
been found, changed, inserted, or
deleted (SELECT INTO, UPDATE,
INSERT, DELETE, FETCH)

  In plpgsql, we can get the value of the
status in a variable called FOUND

29

Breaking Cursor Loops – (3)

  The structure of a cursor loop is thus:
<<cursorLoop>> LOOP
 …
 FETCH c INTO … ;

 IF NOT FOUND THEN EXIT cursorLoop;
 END IF;
 …

END LOOP;

30

Example: Cursor

  Let us write a procedure that examines
Sells(bar, beer, price), and raises by 10
the price of all beers at Cafe Chino that
are under 30

  Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway

Returns Cafe Chino’s
price list

Used to hold
beer-price pairs
when fetching
through cursor c

31

The Needed Declarations

CREATE FUNCTION RaisePrices()
 RETURNS VOID AS $$
 DECLARE theBeer CHAR(20);
 thePrice REAL;
 c CURSOR FOR
 (SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’);

Check if the recent
FETCH failed to
get a tuple

If Cafe Chino charges less than
30 for the beer, raise its price at
at Cafe Chino by 10

32

The Procedure Body
BEGIN

 OPEN c;
 <<menuLoop>> LOOP
 FETCH c INTO theBeer, thePrice;
 EXIT menuLoop WHEN NOT FOUND;
 IF thePrice < 30 THEN
 UPDATE Sells SET price = thePrice + 10
 WHERE bar = ’C.Ch.’ AND beer = theBeer;
 END IF;
 END LOOP;
 CLOSE c;

END;$$ LANGUAGE plpgsql;

33

Tuple-Valued Variables

  PL/pgsql allows a variable x to have a
tuple type

  x R%ROWTYPE gives x the type of R’s
tuples

  R could be either a relation or a cursor
  x.a gives the value of the component

for attribute a in the tuple x

34

Example: Tuple Type
  Repeat of RaisePrices() declarations with

variable bp of type beer-price pairs
CREATE FUNCTION RaisePrices()
RETURNS VOID AS $$

 DECLARE CURSOR c IS
 SELECT beer, price FROM Sells
 WHERE bar = ’C.Ch.’;
 bp c%ROWTYPE;

Components of bp are
obtained with a dot and
the attribute name

35

RaisePrices() Body Using bp

BEGIN
 OPEN c;
 LOOP
 FETCH c INTO bp;
 EXIT WHEN NOT FOUND;
 IF bp.price < 30 THEN
 UPDATE Sells SET price = bp.price + 10
 WHERE bar = ’C.Ch.’ AND beer = bp.beer;
 END IF;
 END LOOP;
 CLOSE c;

END;

36

Database-Connection Libraries

37

Host/SQL Interfaces Via
Libraries

  The third approach to connecting
databases to conventional languages
is to use library calls

1.  C + CLI
2.  Java + JDBC
3.  PHP + PEAR/DB

38

Three-Tier Architecture

  A common environment for using a
database has three tiers of processors:

1. Web servers – talk to the user.
2.  Application servers – execute the business

logic
3.  Database servers – get what the app

servers need from the database

39

Example: Amazon

  Database holds the information about
products, customers, etc.

  Business logic includes things like “what
do I do after someone clicks
‘checkout’?”
  Answer: Show the “how will you pay for

this?” screen

40

Environments, Connections, Queries

  The database is, in many DB-access
languages, an environment

  Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications

  The app server issues statements:
queries and modifications, usually

41

JDBC

  Java Database Connectivity (JDBC) is a
library similar for accessing a DBMS
with Java as the host language

  221 drivers available: PostgreSQL,
MySQL, Oracle, ODBC, ...

  http://jdbc.postgresql.org/

URL of the database
your name, and password
go here

The JDBC classes

The driver
for postgresql;
others exist

Loaded by
forName

import java.sql.*;

...
Class.forName(“org.postgresql.Driver”);
Connection myCon =

 DriverManager.getConnection(…);
...

42

Making a Connection

URL for PostgreSQL database
  jdbc:postgresql://<host>[:<port>]/

<database>?user=<user>&
password=<password>

  Alternatively use getConnection variant:
  getConnection(“jdbc:postgresql://

<host>[:<port>]/<database>“,
<user>, <password>);

  DriverManager.getConnection(“jdbc:pos
tgresql://10.110.4.210/petersk09“,
“petersk09“, “geheim“); 43

44

Statements

  JDBC provides two classes:
1.  Statement = an object that can accept a

string that is a SQL statement and can
execute such a string

2.  PreparedStatement = an object that has
an associated SQL statement ready to
execute

createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement 45

Creating Statements

  The Connection class has methods to create
Statements and PreparedStatements

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

 myCon.createStatement(
 ”SELECT beer, price FROM Sells ” +
 ”WHERE bar = ’C.Ch.’ ”
);

46

Executing SQL Statements

  JDBC distinguishes queries from
modifications, which it calls “updates”

  Statement and PreparedStatement each
have methods executeQuery and
executeUpdate
  For Statements: one argument – the query or

modification to be executed
  For PreparedStatements: no argument

47

Example: Update

  stat1 is a Statement
  We can use it to insert a tuple as:
stat1.executeUpdate(

 ”INSERT INTO Sells ” +
 ”VALUES(’C.Ch.’,’Eventyr’,30)”
);

48

Example: Query

  stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’C.Ch.’ ”

  executeQuery returns an object of class
ResultSet – we’ll examine it later

  The query:
ResultSet menu = stat2.executeQuery();

49

Accessing the ResultSet

  An object of type ResultSet is
something like a cursor

  Method next() advances the “cursor” to
the next tuple
  The first time next() is applied, it gets the

first tuple
  If there are no more tuples, next() returns

the value false

50

Accessing Components of Tuples
  When a ResultSet is referring to a tuple,

we can get the components of that
tuple by applying certain methods to
the ResultSet

  Method getX (i), where X is some
type, and i is the component number,
returns the value of that component
  The value must have type X

51

Example: Accessing Components

  Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’C.Ch.’ ”

  Access beer and price from each tuple by:
while (menu.next()) {
 theBeer = menu.getString(1);
 thePrice = menu.getFloat(2);
 /*something with theBeer and

 thePrice*/

}

Important Details

  Reusing a Statement object results in
the ResultSet being closed
  Always create new Statement objects using

createStatement() or explicitly close
ResultSets using the close method

  For transactions, for the Connection con
use con.setAutoCommit(false) and
explicitly con.commit() or con.rollback()
  If AutoCommit is false and there is no

commit, closing the connection = rollback 52

53

PHP

  A language to be used for actions within
HTML text

  Indicated by <?PHP code ?>.
  DB library exists within PEAR (PHP

Extension and Application Repository)
  Include with include(DB.php)

54

Variables in PHP

  Must begin with $
  OK not to declare a type for a variable
  But you give a variable a value that

belongs to a “class,” in which case,
methods of that class are available to it

55

String Values

  PHP solves a very important problem
for languages that commonly construct
strings as values:
  How do I tell whether a substring needs to

be interpreted as a variable and replaced
by its value?

  PHP solution: Double quotes means
replace; single quotes means do not

56

Example: Replace or Not?

$100 = ”one hundred dollars”;
$Peter = ’You owe me $100.’;
$Lars = ”You owe me $100.”;

  Value of $Peter is ’You owe me $100’,
while the value of $Lars is ’You owe me
one hundred dollars’

57

PHP Arrays

  Two kinds: numeric and associative
  Numeric arrays are ordinary, indexed

0,1,…
  Example: $a = array(”Paul”, ”George”,

”John”, ”Ringo”);
 Then $a[0] is ”Paul”, $a[1] is ”George”, and so

on

58

Associative Arrays

  Elements of an associative array $a are
pairs x => y, where x is a key string
and y is any value

  If x => y is an element of $a, then
$a[x] is y

59

Example: Associative Arrays

  An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”pgsql”,
 ”hostspec” => ”localhost”,
 ”port” => ”5432”,
 ”database” => ”petersk09”,

 ”username” => ”petersk09”,
 ”password” => ”geheim”);

Function connect
in the DB library

60

Making a Connection

  With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Class is Connection
because it is returned
by DB::connect()

61

Executing SQL Statements

  Method query applies to a Connection
object

  It takes a string argument and returns a
result
  Could be an error code or the relation

returned by a query

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

62

Example: Executing a Query

  Find all the bars that sell a beer given
by the variable $beer

$beer = ’Od.Cl.’;
$result = $myCon->query(
 ”SELECT bar FROM Sells” .
 ”WHERE beer = ’$beer’;”);

63

Cursors in PHP

  The result of a query is the tuples
returned

  Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none

64

Example: Cursors

while ($bar = $result->fetchRow())
{
 // do something with $bar

}

65

Example: Tuple Cursors

$bar = “C.Ch.“;
$menu = $myCon->query(
“SELECT beer, price FROM Sells
WHERE bar = ‘$bar‘;“);

while ($bp = $result->fetchRow())
{
 print $bp[0] . “ for “ . $bp[1];

}

