Real SQL Programming

SQL in Real Programs

= We have seen only how SQL is used at
the generic query interface — an
environment where we sit at a terminal
and ask queries of a database

= Reality is almost always different:
conventional programs interacting with
SQL

Options

1. Code in a specialized language is
stored in the database itself (e.q.,
PSM, PL/pgsql)

2. SQL statements are embedded in a
host language (e.g., C)

3. Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB)

Stored Procedures

= PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements

= PSM = a mixture of conventional
statements (if, while, etc.) and SQL

= Lets us do things we cannot do in SQL
alone

Procedures in PostgreSQL

CREATE PROCEDURE <name>
([<arguments>]) AS $$
<program>%$$ LANGUAGE <lang>;

= PostgreSQL only supports functions:

CREATE FUNCTION <name>
([<arguments>]) RETURNS VOID AS $$
<program>%$$ LANGUAGE <lang>;

Parameters for Procedures

= Unlike the usual name-type pairs in
languages like Java, procedures use mode-
name-type triples, where the mode can be:
= IN = function uses value, does not change
= OUT = function changes, does not use
= INOUT = both

Example: Stored Procedure

= Let’s write a procedure that takes two
arguments b and p, and adds a tuple
to Sells(bar, beer, price) that has bar =
'‘C.Ch.", beer = b, and price = p
= Used by Cafe Chino to add to their menu
more easily

The Procedure

CREATE FUNCTION ChinoMenu (
INDb CHAR(20),

«___ Parameters are both

INp REAL read-only, not changed
) RETURNS VOID AS $%
INSERT INTO Sells b

VALUES(’CCh’, b, p), — a single insertion

$$ LANGUAGE plpgsql;

Invoking Procedures

= Use SQL/PSM statement CALL, with the name
of the desired procedure and arguments

= Example;:
CALL ChinoMenu (’'Eventyr’, 50);

= Functions used in SQL expressions wherever
a value of their return type is appropriate

= No CALL in PostgreSQL.:
SELECT ChinoMenu (’Eventyr’, 50);

9

Kinds of PL/pgsgl statements

= Retu

rn statement: RETURN <expression>

returns value of a function

= Like in Java, RETURN terminates the
function execution

= Declare block: DECLARE <name> <type>

used
= Grou

to declare local variables
ps of Statements: BEGIN . . . END

= Se

parate statements by semicolons

10

Kinds of PL/pgsql statements
= Assignment statements:

<variable> := <expression>;
= Example: b := '0d.Ccl.’;

= Statement labels: give a statement a
label by prefixing a name and a colon

11

IF Statements

= Simplest form:
IF <condition> THEN
<statements(s)>
END IF;

= Add ELSE <statement(s)> if desired, as
IF... THEN...ELSE...END IF;

= Add additional cases by ELSEIF
<statements(s)>: IF ... THEN ... ELSEIF ...
THEN ... ELSEIF ... THEN ... ELSE ... END IF;

Example: IF

= Let’s rate bars by how many customers they
have, based on Frequents(drinker,bar)

= <100 customers: ‘unpopular’
= 100-199 customers: ‘average’
= >= 200 customers: ‘popular’

= Function Rate(b) rates bar b

13

Example: IF

CREATE FUNCTION Rate (IN b CHAR(20))
RETURNS CHAR(10) AS $$ Number of

customers of
DECLARE cust INTEGER: / par b
BEGIN

cust :=|(SELECT COUNT(*) FROM Frequents
WHERE bar = b);

IF cust < 100 THEN RETURN ‘unpopular’;
ELSEIF cust < 200 THEN RETURN ‘average’;

ELSE RETURN ‘popular’; \

END IF; Nested
END; IF statel?zent

Loops

= Basic form:

<<<label>>>

LOOP
<statements>
END LOOP:

= Exit from a loop by:
EXIT <label> WHEN <condition>

15

Example: EXiting a Loop
<<loop1>> LOOP

EXIT loopl WHEN ...;

\ If this statement is executed and

END LOOP; the condition holds ...

... control winds up here

16

Other Loop Forms

= WHILE <condition> LOOP
<statements>
END LOOP;

= Equivalent to the following LOOP:

LOOP
EXIT WHEN NOT <condition>;

<statements>
END LOOP;

17

Other Loop Forms

= FOR <name> IN <start> TO <end>
LOOP
<statements>
END LOOP;

= Equivalent to the following block:

<name> := <start>;

LOOP EXIT WHEN <name> > <end>;
<statements>
<name> .= <pame>+1;

END LOOP;

18

Other Loop Forms

= FOR <name> IN REVERSE <start> TO
<end> LOOP

<statements>
END LOOP;

= Equivalent to the following block:

<name> := <start>;

LOOP EXIT WHEN <name> < <end>;
<statements>
<hame> .= <pame> - 1;

END LOOP;

19

Other Loop Forms

* FOR <name> IN <start> TO <end>
BY <step> LOOP

<statements>
END LOOP;

= Equivalent to the following block:

<name> := <start>;

LOOP EXIT WHEN <name> > <end>;
<statements>
<hname> = <name>+<step>,
END LOOP;

20

Queries

General SELECT-FROM-WHERE
queries are not permitted in PL/pgsql

There are three ways to get the effect
of a query:

1. Queries producing one value can be the
expression in an assignment

2. Single-row SELECT ... INTO
3. Cursors

21

Example: Assignment/Query

= Using local variable p and Sells(bar, beer,
price), we can get the price Cafe Chino
charges for Odense Classic by:

p := (SELECT price FROM Sells
WHERE bar = "C.Ch’ AND
beer = 70d.Cl1l.");

22

SELECT ... INTO

= Another way to get the value of a query
that returns one tuple is by placing INTO
<variable> after the SELECT clause

= Example:
SELECT price INTO p FROM Sells
WHERE bar = 'C.Ch.’ AND
beer = "0d.C1l.";

23

Cursors

= A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query

= Declare a cursor ¢ by:
DECLARE c CURSOR FOR <query>;

24

Opening and Closing Cursors

= TO use cursor ¢, we must issue the
command:

OPEN c:

= The query of ¢ is evaluated, and c is set
to point to the first tuple of the result

= When finished with ¢, issue command:
CLOSE c;

25

Fetching Tuples From a Cursor

= To get the next tuple from cursor c,
issue command:

FETCH FROM c INTO Xy, X5,...,X,, ;

= The x's are a list of variables, one for
each component of the tuples referred
to by ¢

= C is moved automatically to the next
tuple

26

Breaking Cursor Loops — (1)

= The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple
fetched

= A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver

27

Breaking Cursor Loops — (2)

= Many operations returns if a row has
been found, changed, inserted, or
deleted (SELECT INTO, UPDATE,
INSERT, DELETE, FETCH)

= In plpgsal, we can get the value of the
status in a variable called FOUND

28

Breaking Cursor Loops — (3)

= The structure of a cursor loop is thus:
<<cursorLoop>> LOOP

FETCH ¢ INTO .. ;
IF NOT FOUND THEN EXIT cursorLoop;
END IE7;

END LOOP;

29

Example: Cursor

= Let us write a procedure that examines
Sells(bar, beer, price), and raises by 10
the price of all beers at Cafe Chino that
are under 30

= Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway

30

The Needed Declarations

CREATE FUNCTION RaisePrices()
RETURNS VOID AS $$

Used to hold
DECLARE theBeer CHAR(20); | beer-price pairs
_ when fetching
thePrice REAL; through cursor c

c CURSOR FOR
(SELECT beer, price FROM Sells
WHERE bar = 'C.Ch.");

\ Returns Cafe Chino’s
price list
31

The Procedure Body

BEGIN
OPEN c; Check if the recent
FETCH failed to
<<menuLoop>> LOOP get a tuple

FETCH c INTO theBeer, thePrice; e
EXIT menuLoop WHEN NOT FOUND;
IF thePrice < 30 THEN
UPDATE Sells SET price = thePrice + 10
WHERE bar = 'C.Ch.” AND beer = theBeer;
END IF;

END LO(_)P’ If Cafe Chino charges less than
CLOSE c; 30 for the beer, raise its price at

END;$$ LANGUAGE plpgsql; at Cafe Chino by 10

32

Tuple-Valued Variables

= PL/pgsql allows a variable x to have a
tuple type

= X R%ROWTYPE gives x the type of R’s
tuples

= R could be either a relation or a cursor

= X.a gives the value of the component
for attribute a in the tuple x

33

Example: Tuple Type

= Repeat of RaisePrices() declarations with
variable bp of type beer-price pairs

CREATE FUNCTION RaisePrices ()
RETURNS VOID AS $S

DECLARE CURSOR ¢ IS
SELECT beer, price FROM Sells
WHERE bar = "C.Ch.’";

bp cSROWTYPE;

34

RaisePrices() Body Using bp

BEGIN
OPEN c;
LOOP
FETCH c INTO bp;
EXIT WHEN NOT FOUND;
IF bp.price |< 30 THEN

UPDA ells SET price =|bp.price + 10
WHERE bar =“€.Ch.” AND be77r =| bp.beer;
END IF; 7

END LOOP; Components of bp are
CLOSE c; obtained with a dot and

the attribute name
END; 3s

-

Database-Connection Libraries

36

Host/SQL Interfaces Via
Libraries

The third approach to connecting
databases to conventional languages
is to use library calls

1. C+ CLI
2. Java + JDBC
3. PHP + PEAR/DB

37

Three-Tier Architecture

= A common environment for using a
database has three tiers of processors:
1. Web servers — talk to the user.
2. Application servers — execute the business
logic

5. Database servers — get what the app
servers need from the database

38

Example: Amazon

= Database holds the information about

Proc

ucts, customers, etc.

= Busi
do 1

ness logic includes things like "what
do after someone clicks

‘checkout™?”

= Answer: Show the “how will you pay for
this?” screen

39

Environments, Connections, Queries

= The database is, in many DB-access
languages, an environment

= Database servers

naintain some number

of connections, so app servers can ask
queries or perform modifications

= The app server issues statements:
queries and modifications, usually

40

JDBC

= Java Database Connectivity (JDBC) is a
library similar for accessing a DBMS
with Java as the host language

= 221 drivers available: PostgreSQL,
MySQL, Oracle, ODBC, ...

" http://jdbc.postgresgl.org/

41

Making a Connection

/ The JDBC classes

import [Java.sqgl.*;

Class.forName (Y“org.postgresqgl.Driver”) ;

Connection myCon =

DriverManager|.getConnection (..)|;
. / The driver
Loaded by URL of the database for postgresq|:

forName your name, and password

o here others exist
g r

42

URL for PostgreSQL database

= jdbc:postgresql://<host>[:<port>]/
<database>?user=<user>&
password=<password>

= Alternatively use getConnection variant:

= getConnection(“jdbc:postgresql://
<host>[:<port>]/<database>",
<user>, <password>);

= DriverManager.getConnection(*jdbc:pos
tgresql://10.110.4.210/petersk09",
“petersk09%, “"geheim™);

43

Statements

JDBC provides two classes:

1. Statement = an object that can accept a
string that is a SQL statement and can
execute such a string

/. PreparedStatement = an object that has
an associated SQL statement ready to
execute

44

Creating Statements

= The Connection class has methods to create
Statements and PreparedStatements

Statement statl = myCon.createStatement();
PreparedStatement stat2 =
myCon.createStatement(
"SELECT beer, p\ice FROM Sells ” +
"WHERE bar = 'C\Ch.”

); with no argument returns
a Statement; with one argument it returns
a PreparedStatement 45

Executing SQL Statements

= JDBC distinguishes queries from
modifications, which it calls “updates”

= State

ment and PreparedState

nent each

have methods executeQuery and
executeUpdate

= For Statements: one argument — the query or
modification to be executed

= For PreparedStatements: no argument

46

Example: Update

= statl is a Statement
= We can use it to insert a tuple as:
statl.executeUpdate (

"INSERT INTO Sells ” +

"VALUES ("C.Ch.’","Eventyr’,30)”

) ;

47

Example: Query

= stat? is a PreparedStatement holding
the query “SELECT beer, price FROM
Sells WHERE bar = 'C.Ch." ”

= executeQuery returns an object of class
ResultSet — we'll examine it later

= The query:
ResultSet menu = stat2.executeQuery();

48

Accessing the ResultSet

= An object of type ResultSet is
something like a cursor

= Method next() advances the “cursor” to
the next tuple

= The first time next() is applied, it gets the
first tuple

= If there are no more tuples, next() returns
the value false

49

Accessing Components of Tuples

= When a ResultSet is referring to a tuple,
we can get the components of that
tuple by applying certain methods to
the ResultSet

= Method getX (/), where X is some
type, and / is the component numbetr,
returns the value of that component

= The value must have type X

50

Example: Accessing Components

= Menu = ResultSet for query “"SELECT beer,
price FROM Sells WHERE bar = '‘C.Ch." ”

= Access beer and price from each tuple by:

while (menu.next()) {
theBeer = menu.getString(l);
thePrice = menu.getFloat (2);

/*something with theBeer and
thePrice*/

Important Details

= Reusing a Statement object results in
the ResultSet being closed

= Always create new Statement objects using
createStatement() or explicitly close
ResultSets using the close method
= For transactions, for the Connection con
use con.setAutoCommit(false) and
explicitly con.commit() or con.rollback()

= If AutoCommit is false and there is no
commit, closing the connection = rollback ,,

PHP

= A language to be used for actions within
HTML text

= Indicated by <?PHP code ?>.

= DB library exists within PEAR (PHP
Extension and Application Repository)

= Include with include (DB.php)

53

Variables in PHP

= Must begin with $
= OK not to declare a type for a variable

= But you give a variable a value that
belongs to a “class,” in which case,
methods of that class are available to it

54

String Values

= PHP solves a very important problem
for languages that commonly construct
strings as values:

= How do I tell whether a substring needs to
pe interpreted as a variable and replaced
oy its value?

= PHP solution: Double quotes means
replace; single quotes means do not

55

Example: Replace or Not?

S100 = "one hundred dollars”;
SPeter = ’"You owe me $100.';
SLars = ”"You owe me $100.";

= Value of $Peter is 'You owe me $100,
while the value of $Lars is 'You owe me
one hundred dollars’

56

PHP Arrays

= Two kinds: numeric and associative

= Numeric arrays are ordinary, indexed
0,1,...
= Example: $a = array("Paul”, “George”,
"John”, "Ringo”);
= Then $a[0] is “Paul”, $a[1] is "George”, and so
on

57

Associative Arrays

= Elements of an associative array $a are
pairs X => Yy, where x is a key string
and y is any value

= If x => y is an element of $a, then
$a[x] is y

58

Example: Associative Arrays

= An environment can be expressed as an
associative array, e.g.:

SmyEnv = array (
"phptype” => "pgsql”,
"hostspec” => "localhost”,
"port” => "5432",
"database” => "petersk09”,
"username” => "petersk09”,

"password” => "geheim”) ;

Making a Connection

= With the DB library imported and the
array $myEnv available:

sSmyCon =

DB: :connect

/

Function connect
in the DB library

Class is Connection
because it is returned
by DB::connect()

(SmyEnv) ;

Executing SQL Statements

= Method query applies to a Connection
object

= It takes a string argument and returns a
result

= Could be an error code or the relation
returned by a query

61

Example: Executing a Query

= Find all the bars that sell a beer given

by the variable $beer ?etng:tion Concatenation
Sbeer = ’Od.Cl.’;/pp in PHP
Sresult = SmyCon->query (

"SELECT bar FROM Sells”

"WHERE beer = '|Sbeerl ;”);

Remember this
variable is replaced

by its value.
62

Cursors in PHP

= The result of a query is the tuples
returned

= Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none

63

Example: Cursors

while (Sbar = Sresult->fetchRow())

{
// do something with Sbar

J

64

Example: Tuple Cursors

Sbar = “C.Ch."“;

Smenu = SmyCon->query (
“SELECT beer, price FROM Sells
WHERE bar = ‘Sbar'‘;"4V);

while (Sbp = Sresult->fetchRow())
{

print $Sbp[0] . ™ for ™ . Sbpll];
}

65

