Creating (Declaring) a Relation

= Simplest form is:
CREATE TABLE <name> (
<list of elements>
);
= To delete a relation:
DROP TABLE <name>;

Elements of Table Declarations

= Most basic element:
an attribute and its type

= The most common types are:
= INT or INTEGER (synonyms)
= REAL or FLOAT (synonyms)
= CHAR(n) = fixed-length string of n
characters

= VARCHAR(n) = variable-length string of up
to n characters

Example: Create Table

CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20) ,
price REAL

) ;

SQL Values

= Integers and reals are represented as
you would expect

= Strings are too, except they require
single quotes
= Two single quotes = real quote, e.q.,
'Trader Joe s Hofbrau Bock’
= Any value can be NULL
= (like Objects in Java)

Dates and Times

= DATE and TIME are types in SQL
= The form of a date value is:

DATE ’ yyyy-mm-dd’

= Example: DATE "2009-02-04" for
February 4, 2009

Times as Values

= The form of a time value is:

TIME " hh:mm:ss’
with an optional decimal point and
fractions of a second following

= Example: TIME "15:30:02.5
and a half seconds after 15:30

two

Declaring Keys

= An attribute or list of attributes may be
declared PRIMARY KEY or UNIQUE

= Either says that no two tuples of the
relation may agree in all the attribute(s)
on the list

= There are a few distinctions to be
mentioned later

Declaring Single-Attribute Keys

= Place PRIMARY KEY or UNIQUE after the
type in the declaration of the attribute

= Example:
CREATE TABLE Beers (
name CHAR (20) UNIQUE,
mant CHAR (20)

) ;

Declaring Multiattribute Keys

= A key declaration can also be another
element in the list of elements of a

CREA

E TABLE statement

= This form is essential if the key consists
of more than one attribute

= May be used even for one-attribute keys

Example: Multiattribute Key

= The bar and beer together are the key for Sells:
CREATE TABLE Sells (
bar CHAR (20),
beer VARCHAR (20) ,
price REAL,
PRIMARY KEY (bar, beer)

10

PRIMARY KEY vs. UNIQUE

. There can be only one PRIMARY KEY

for a relation, but several UNIQUE
attributes

. No attribute of a PRIMARY KEY can
ever be NULL in any tuple. But

attributes declared UNIQUE may have

NULL’ s, and there may be several
tuples with NULL

11

Changing a Relation Schema

= To delete an attribute:

ALTER TABLE <name> DROP
<attribute>;

= To add an attribute:
ALTER TABLE <name> ADD <element>;
= Examples:
ALTER TABLE Beers ADD prize CHAR(10);
ALTER TABLE Drinkers DROP phone;

12

Semistructured Data

= Another data model, based on trees
= Motivation: flexible representation of data

= Motivation: sharing of documents among
systems and databases

13

Graphs of Semistructured Data

= Nodes = objects
= Labels on arcs (like attribute names)

= Atomic values at leaf nodes (nodes with
no arcs out)

= Flexibility: no restriction on:

= | abels out of a node
= Number of successors with a given label

14

Example: Data Graph

- . new kind
eer eer
bar —— of data
manf manf prize /
Alban ® |
year; ; award
addr N . - ~
N

@ \ S The beer object
~

For Odense Classic
The bar object
For Cafe Chino

15

XML

= XML = Extensible Markup Language

= While HTML uses tags for formatting
(e.qg., “italic”), XML uses tags for
semantics (e.g., “this is an address™)

= Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents

16

XML Documents

= Start the document with a declaration,
surrounded by <?xml ... ?>

= Typical:
<?xml version = “1.0° encoding
= “utf-8" 2>

= Document consists of one
surrounding nested tags

17

Tags

= Tags, as in HTML, are normally
matched pairs, as <FOO> ... </FOO>

= Optional single tag <FOO/>
= Tags may be nested arbitrarily
= XML tags are case sensitive

18

Example: an XML Document

<?xml version = “1.0” encoding = “utf-8” ?> A NAME

<BARS> ___— subobject

<BAR><NAME>Cafe Chino</NAME>

<BEER><NAME>0Odense Classic</NAME>
<PRICE>20</PRICE> </BEER>™

<BEER><NAME>Erdinger WeiBbier</NAM
<PRICE>35</PRICE></BEER> A BEER

</BAR> subobject
<BAR> ...

</BARS>

19

Attributes

= Like HTML, the opening tag in XML can
have attribute = value pairs

= Attributes also allow linking among
elements (discussed later)

20

Bars, Using Attributes

<?xml version = “1.0” encoding = “utf-8” ?>
<BARS>
<BAR name = “Cafe Chino” >
<BEER name = “Odense Classii)” price|= 20 />

<BEER name = “Erdinger WeiBbier” price =
35 /> \ ////////////”
</BAR>

BAR name and Notice Beer elements
< > pgc_i a:e have only opening tags
</BARS> attributes with attributes.

21

DTD’ s (Document Type Definitions)

= A grammatical notation for describing
allowed use of tags.

= Definition form:

<!DOCTYPE <root tag> |
<!ELEMENT <name> (<components>) >
. . . more elements . . .

1>

22

Example: DTD

A BARS object has
<IDOCTYPE BARS [___— zeroor more BAR’s

<IELEMENT[BARS (BAR¥)> "¢
<IELEMENT BAR (NAME, BEER+)> 4 pa has one
<IELEMENT[NAME (#PCDATA)> . NAME and one

or more BEER

<!ELEMENT|BEER (NAME, PRICE)> subobjects.

<IELEMENT PRICE (#PCDATA);\
/ A BEER has a

NAME and PRICE NAME and a
are HTML text. PRICE.

23

Attributes

= Opening tags in XML can have
attributes

= Ina DTD,
<!ATTLISTE...>

declares an attribute for element E,
along with its datatype

24

<!I'ELEMENT BEER
<!ATTLIST name CDATA

mant

Character
string

Example use:

. Attributes

EMPTY!

No closing

subelements

— tag or
>

#REQUIRED),

L]

CDATA]

#IMPLIEDP>

|

Required = “must occur”;
Implied = “optional

<BEER name="0Odense Classic” />

25

Summary 1

Things you should know now:

= Basic ideas about databases and DBMSs
= What is a data model?

= [dea and Details of the relational model
= SQL as a data definition language

Things given as background:
= History of database systems
= Semistructured data model y

Relational Algebra

What is an “Algebra”

= Mathematical system consisting of:

= Operands — variables or values from which
new values can be constructed

= Operators — symbols denoting procedures
that construct new values from given
values

= Example:
= Integers ..., -1, 0, 1, ... as operands
= Arithmetic operations +/- as operators

28

What is Relational Algebra?

= An algebra whose operands are
relations or variables that represent
relations

= Operators are designed to do the most
common things that we need to do with
relations in a database

= The result is an algebra that can be used
as a query language for relations

29

Core Relational Algebra

= Union, intersection, and difference

= Usual set operations, but both operands
must have the same relation schema

= Selection: picking certain rows
= Projection: picking certain columns

= Products and joins: compositions of
relations

= Renaming of relations and attributes

30

Selection

" R; 1= O¢(R,)
= C is a condition (as in “if” statements)
that refers to attributes of R,

= R, is all those tuples of R, that satisfy C

31

Example: Selection

Relation Sells:
bar beer price

Cafe Chino| 0Od. Cla. 20
Cafe Chino| Erd. Wei. 35
Cafe Bio Od. Cla. 20
Bryggeriet | Pilsener 31

ChinoMenu := O —«cafe chino”(SEIIS):

bar beer price
Cafe Chino| Od. Cla. 20
Cafe Chino| Erd. Wei. 35

Projection

"Ry =T (Ry)
= [is a list of attributes from the schema of R,

= R, is constructed by looking at each tuple of R,,
extracting the attributes on list L, in the order
specified, and creating from those components
a tuple for R,

= Eliminate duplicate tuples, if any

33

Example: Projection

Relation Sells:
bar beer price
Cafe Chino| 0Od. Cla. 20
Cafe Chino| Erd. Wei. 35
Cafe Bio Od. Cla. 20
Bryggeriet | Pilsener 31
Prices := TTyeer price(SENIS):
beer price
Od. Cla. 20
Erd. Wei. 35
Pilsener 31

34

Extended Projection

Using the same TT, operator, we allow

the list L to contain arbitrary
expressions involving attributes:

1. Arithmetic on attributes, e.qg., A+B->C

2. Duplicate occurrences of the same
attribute

35

Example: Extended Projection

R= (/A

1
3

B
2
4

Tarp-scan (R) =

N WO

36

Product

" R;:= R, XR,
= Pair each tuple t; of R; with each tuple t, of R,
= Concatenation t;t, is a tuple of R,

= Schema of R; is the attributes of R, and then
R,, in order

= But beware attribute A of the same name in R,
and R,: use R;.A and R,.A

37

= R, X R,

R

Example

O 0 O WO OO

LD INO O IMNO

R,.B,| R,.B, C |)

ANAN AN X X X

L4 =M Mo

N’

o

a'd

N N

MmN < OO 0 o
S |

<|— ™M M N O

N’ N’

i 9\

a'd nd

38

Theta-Join

= R; :=R; XI-R,
= Take the product R; X R,
= Then apply O to the result

= As for O, C can be any boolean-valued
condition

= Historic versions of this operator allowed
only A 6 B, where 6 is =, <, etc.; hence

the name “theta-join”

39

Example: Theta Join

Sells(| bar, | beer, | price|) Bars(| name,| addr)
C.Ch.| Od.C,| 20 C.Ch. | Reventlo.
C.Ch.|ErW. | 35 C.Bi. |Brandts
C.Bi. | Od.C, 20 Bryg. | Flakhaven
Bryg.| Pils. | 31

BarInfo := Sells [><]Sells.bar = Bars.name Bars

BarInfo(|bar, | beer, | price,| name,| addr)
C.Ch.| O0d.C.| 20 C.Ch. | Reventlo.
C.Ch.| ErW.| 35 C.Ch. | Reventlo.
C.Bi. | Od.C.| 20 C.Bi. | Brandts
Bryg.| Pils. | 31 Bryg. | Flakhaven 0

Natural Join

= A useful join variant (natural join)
connects two relations by:

= Equating attributes of the same name, and

= Projecting out one copy of each pair of
equated attributes

= Denoted R; := R; X R,

41

Example: Natural Join

Sells(| bar, | beer, |price|) Bars(| bar, | addr)
C.Ch.| Od.Cl, 20 C.Ch| Reventlo.
C.Ch.| ErWe| 35 C.Bi.| Brandts
C.Bi. | Od.Cl.| 20 Bryg| Flakhaven
Bryg.| Pils. | 31

BarInfo := Sells DX Bars

Note: Bars.name has become Bars.bar
to make the natural join “work”

BarInfo(|bar, | beer, |price, |addr)
C.Ch.| Od.Cl., 20 |Reventlo.
C.Ch.| ErWe., 35 |Reventlo.
C.Bi. | Od.Cl.| 20 |Brandts
Bryg.| Pils. | 31 |Flakhaver

42

Renaming

= The P operator gives a new schema to a
relation

* R; i= Pr,a,..a)(Ry) makes R; be a
relation with attributes A,,...,A, and the
same tuples as R,

= Simplified notation: R,(A,,...,A,) := R,

43

Example: Renaming

Bars(| name, addr)
C.Ch. | Reventlo.

C.Bi. | Brandts
Bryg. | Flakhaven

R(bar, addr) := Bars

R(|bar, |addr)
C.Ch. | Reventlo.
C.Bi. | Brandts

Bryg. | Flakhaver

—

Building Complex Expressions

= Combine operators with parentheses
and precedence rules
= Three notations, just as in arithmetic:
1. Sequences of assignment statements
2. Expressions with several operators
3. Expression trees

45

Sequences of Assignments

= Create temporary relation names
= Renaming can be implied by giving

relations a list of attri

outes

= Example: Ry := Ry X
written:
R, :=R, XR,

R; 1= O¢(Ry)

- R, can be

46

Expressions in a Single Assignment

= Example: the theta-join R; := R; XI-R,
can be written: R; := O-(R; X R,)
= Precedence of relational operators:
1. [g, 11, p] (highest)
2. [X,]
3.N
4. [U, —]

47

Expression Trees

= Leaves are operands — either variables
standing for relations or particular,
constant relations

= Interior nodes are operators, applied to
their child or children

48

Example: Tree for a Query

= Using the relations Bars(name, addr)
and Sells(bar, beer, price), find the
names of all the bars that are either at
Brandts or sell Pilsener for less than 35:

49

1T

O-addr = “Brandts”

Bars

name

As a Tree:

U

p R(name)

1T

bar

O-price<35 AND beer="Pilsener”

Sells

50

Example: Self-Join

= Using Sells(bar, beer, price), find the bars
that sell two different beers at the same
price

= Strategy: by renaming, define a copy of
Sells, called S(bar, beerl, price). The
natural join of Sells and S consists of

quadruples (bar, beer, beerl, price) such
that the bar sells both beers at this price

51

The Tree

1T

bar

O-beer = beerl

>

pS(bar, beer1, price) \

Sells Sells

52

Schemas for Results

= Union, intersection, and difference: the
schemas of the two operands must be
the same, so use that schema for the
result

= Selection: schema of the result is the
same as the schema of the operand

= Projection: list of attributes tells us the
schema

53

Schemas for Results

» Product: schema is the attributes of both
relations

= Use R;.A and R,.A, etc., to distinguish two
attributes named A

= Theta-join: same as product

= Natural join: union of the attributes of the
two relations

= Renaming: the operator tells the schema

54

Relational Algebra on Bags

= A bag (or multiset) is like a set, but an
element may appear more than once

= Example: {1,2,1,3} is a bag

= Example: {1,2,3} is also a bag that
happens to be a set

55

Why Bags?

= SQL, the most important query
language for relational databases, is
actually a bag language

= Some operations, like projection, are
more efficient on bags than sets

56

Operations on Bags

= Selection applies to each tuple, so its
effect on bags is like its effect on sets.

= Projection also applies to each tuple,
but as a bag operator, we do not
eliminate duplicates.

= Products and joins are done on each
pair of tuples, so duplicates in bags
have no effect on how we operate.

57

R(

Example: Bag Selection

= U1l = >

N OY N O

o

O-A+B< 5 (R) = LA

58

R(

Example: Bag Projection

A, B|)
1 2
5 6
1 2
1TA (R) =

‘I—*U‘II—‘}

59

Example: Bag Product

60

< 0O T O X OO

S.B

M NN MPN

R.B

ANAN O OAN AN

A

= LNL v~ v

)
Qi< o
e N
N’
0y
)
MmN O AN
A/151

R(

RXS

Example: Bag Theta-Join

< O OO <+ O

S.B

M NN M N

R.B

ANAN O NN

Y - LN v~ +

)
Qi< o
e N
N’
0y
)
MmN O AN
A/151

R(

R N R.B<S.B S

61

Bag Union

= An element appears in the union of two
bags the sum of the number of times it
appears in each bag

= Example: {1,2,1} U {1,1,2,3,1} =
{1,1,1,1,1,2,2,3}

62

Bag Intersection

= An element appears in the intersection
of two bags the minimum of the
number of times it appears in either.

= Example:
{1I2I1I1} m {1I2I1I3} = {11112}'

63

Bag Difference

= An element appears in the difference
A — B of bags as many times as it
appears in A, minus the number of
times it appears in B.

= But never less than 0 times.
= Example: {1,2,1,1} — {1,2,3} = {1,1}.

64

Beware: Bag Laws != Set Laws

= Some, but not all algebraic laws that
hold for sets also hold for bags

= Example: the commutative law for
union (R US = SUR) does hold for
bags

= Since addition is commutative, adding the
number of times x appearsin Rand S
does not depend on the order of Rand S

65

Example: A Law That Fails

= Set union is idempotent, meaning that
SuUS=3S5

= However, for bags, if x appears n times
in S, then it appears 2n times in

SUS
= Thus SUS =S in general

"e.g., {1} U{l}={1,1}I={1}

66

Summary 2

More things you should know:
= Relational Algebra

= Selection, (Extended) Projection,
Product, Join, Natural Join, Renaming

= Complex Operations as Sequences,
Expressions, or Trees

= Difference between Sets and Bags

67

Basic SQL Queries

Why SQL?

= SQL is a very-high-level language
= Say “what to do” rather than “how to do it”

= Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java

= Database management system figures
out “best” way to execute query

= Called “query optimization”

69

Select-From-Where Statements

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of
the tables

70

Our Running Example

= All our SQL queries will be based on the
following database schema.

= Underline indicates key attributes.
Beers(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

71

Example

= Using Beers(name, manf), what beers are
made by Albani Bryggerierne?

SELECT name
FROM Beers
WHERE manf = Albani ;

72

Result of Query

Name

Od. Cl.
Eventyr
Blalys

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Albani Bryggerierne, such as Odense Classic.

73

Meaning of Single-Relation Query

= Begin with the relation in the FROM
clause

= Apply the selection indicated by the
WHERE clause

= Apply the extended projection indicated
by the SELECT clause

74

Tuple-variable ¢t

Operational Semantics

Name

manf

Blalys

Albani

N\

Check if

loops over all

tuples

Albani

» Include t.name

in the result, if so

75

Operational Semantics — General

= Think of a tuple variable visiting each
tuple of the relation mentioned in FROM

= Check if the “current” tuple satisfies the
WHERE clause

= If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple

76

* In SELECT clauses

= When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation”

= Example: Using Beers(name, manf):
SELECT *
FROM Beers
WHERE manf = Albani’;

77

Result of Query:

name manf

Od.Cl. | Albani
Eventyr | Albani
Bldlys | Albani

Now, the result has each of the attributes
of Beers

