Basic SQL Queries

Why SQL?

= SQL is a very-high-level language
= Say “what to do” rather than “how to do it”

= Avoid a lot of data-manipulation details
needed in procedural languages like C++ or
Java
= Database management system figures
out “best” way to execute query

= Called “query optimization”

Select-From-Where Statements

SELECT desired attributes

FROM one or more tables

WHERE condition about tuples of
the tables

Our Running Example

= All our SQL queries will be based on the
following database schema.

= Underline indicates key attributes.
Beers(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Example

= Using Beers(name, manf), what beers are
made by Albani Bryggerierne?

SELECT name
FROM Beers
WHERE manf = Albani ;

Result of Query

Name

Od. Cl.
Eventyr
Blalys

The answer is a relation with a single attribute,
name, and tuples with the name of each beer
by Albani Bryggerierne, such as Odense Classic.

6

Meaning of Single-Relation Query

= Begin with the relation in the FROM
clause

= Apply the selection indicated by the
WHERE clause

= Apply the extended projection indicated
by the SELECT clause

Tuple-variable ¢t

Operational Semantics

Name

manf

Blalys

Albani

N\

Check if

loops over all

tuples

Albani

» Include t.name

in the result, if so

Operational Semantics — General

= Think of a tuple variable visiting each
tuple of the relation mentioned in FROM

= Check if the “current” tuple satisfies the
WHERE clause

= If so, compute the attributes or
expressions of the SELECT clause using
the components of this tuple

* In SELECT clauses

= When there is one relation in the FROM
clause, * in the SELECT clause stands for
“all attributes of this relation”

= Example: Using Beers(name, manf):
SELECT *
FROM Beers
WHERE manf = Albani’;

10

Result of Query:

name manf

Od.Cl. | Albani
Eventyr | Albani
Bldlys | Albani

Now, the result has each of the attributes
of Beers

Renaming Attributes

= If you want the result to have different
attribute names, use “AS <new name>" to
rename an attribute

= Example: Using Beers(name, manf):
SELECT name AS beer, mant
FROM Beers
WHERE manf = Albani’

12

Result of Query:

beer manf

Od.Cl. Albani
Eventyr | Albani
Blalys Albani

Expressions in SELECT Clauses

= Any expression that makes sense can
appear as an element of a SELECT clause

= Example: Using Sells(bar, beer, price):
SELECT bar, beer,

price*0.134 AS pricelInEuro
FROM Sells;

14

Result of Query

bar |beer pricelnEuro
C.Ch.| Od.Cl. 2.68
C.Ch.| Er.Wei. | 4.69

15

Example: Constants as Expressions

= Using Likes(drinker, beer):

’ ’

SELECT drinker, li1kes Albani
AS whoLikesAlbani

FROM Likes

WHERE beer = '0d.Cl.’ ;

16

Result of Query

drinker |whoLikesAlbani
Peter likes Albani
Kim likes Albani

17

Example: Information Integration

= We often build “data warehouses” from
the data at many “sources”

= Suppose each bar has its own relation
Menu(beer, price)

= To contribute to Sells(bar, beer, price)
we need to query each bar and insert
the name of the bar

18

Information Integration

= For instance, at the Cafe Biografen we
can issue the query:

SELECT 'Cafe Bio , beer, price
FROM Menu;

19

Complex Conditions in WHERE
Clause

= Boolean operators AND, OR, NOT
= Comparisons =, <>, <, >, <=, >=

= And many other operators that produce
boolean-valued results

20

Example: Complex Condition

= Using Sells(bar, beer, price), find the price
Cafe Biografen charges for Odense Classic:

SELECT price

FROM Sells

WHERE bar = 'Cafe Bio AND
beer = '0d.Cl. ;

21

Patterns

= A condition can compare a string to a
pattern by:
= <Attribute> LIKE <pattern> or
<Attribute> NOT LIKE <pattern>

= Pattern is a quoted string with
% = "any string”
_ = "any character”

22

Example: LIKE

= Using Drinkers(name, addr, phone) find
the drinkers with address in Fynen:

SELECT name
FROM Drinkers
WHERE address LIKE %, 5 s’ ;

23

NULL Values

= Tuples in SQL relations can have NULL
as a value for one or more components

= Meaning depends on context

= Two common cases:

= Missing value: e.g., we know Cafe Chino has
some address, but we don’ t know what it is

= [napplicable: e.qg., the value of attribute
spouse for an unmarried person

24

Comparing NULL" s to Values

= The logic of conditions in SQL is really
3-valued logic: TRUE, FALSE,
UNKNOWN

= Comparing any value (including NULL
itself) with NULL yields UNKNOWN

= A tuple is in a query answer iff the
WHERE clause is TRUE
(not FALSE or UNKNOWN)

25

Three-Valued Logic

= To understand how AND, OR, and NOT
work in 3-valued logic, think of TRUE = 1,
FALSE = 0, and UNKNOWN = 1>

= AND = MIN; OR = MAX; NOT(x) = 1-x
= Example:

TRUE AND (FALSE OR NOT(UNKNOWN)) =
MIN(1, MAX(O, (1 -2))) =

MIN(1, MAX(0, 72)) = MIN(1, ¥2) = s

26

Surprising Example

= From the following Sells relation:
bar beer price
C.Ch. Od.Cl. | NULL
SELECT bar
FROM Sells

WHERE price < 20 OR price >= 20;

" UNKNOWN

S
T

" UNKNOWN

S
T

<
~

UNKNOWN

S
T

27

2-Valued Laws != 3-Valued Laws

= Some common laws, like commutativity
of AND, hold in 3-valued logic

= But not others, e.q., the /aw of the
excluded middle: p OR NOT p = TRUE

= When p = UNKNOWN, the left side is
MAX(2, (1=) =1 1=1

28

Multirelation Queries

= Interesting queries often combine data
from more than one relation

= \WWe can address several relations in one
query by listing them all in the FROM
clause

= Distinguish attributes of the same name
by “<relation>.<attribute>"

29

Example: Joining Two Relations

= Using relations Likes(drinker, beer) and
Frequents(drinker, bar), find the beers liked
by at least one person who frequents C. Ch.

SELECT beer
FROM Likes, Frequents
WHERE bar = C.Ch. AND

Frequents.drinker =
Likes.drinker;

30

Formal Semantics

= Almost the same as for single-relation
queries:

1.

Start with the product of all the relations
in the FROM clause

. Apply the selection condition from the

WHERE clause

Project onto the list of attributes and
expressions in the SELECT clause

31

Operational Semantics

= Imagine one tuple-variable for each
relation in the FROM clause

= These tuple-variables visit each
combination of tuples, one from each
relation

= If the tuple-variables are pointing to
tuples that satisfy the WHERE clause,
send these tuples to the SELECT clause

32

Example

drinker bar drinker | beer
G
Peter Od.Cl. |«
Peter~_ C.Ch. \] \
check _
For C.Ch.| Likes
Frequents

check these
are equal

to output

33

Explicit Tuple-Variables

= Sometimes, a query needs to use two
copies of the same relation

= Distinguish copies by following the
relation name by the name of a
tuple-variable, in the FROM clause

= Jt' s always an option to rename
relations this way, even when not
essential

34

Example: Self-Join

= From Beers(name, manf), find all pairs
of beers by the same manufacturer

= Do not produce pairs like (Od.Cl., Od.Cl.)

= Produce pairs in alphabetic order, e.q.,
(Blalys, Eventyr), not (Eventyr, Blalys)

SELECT bl.name, b2Z.name

FROM Beers bl, Beers b2

WHERE bl.manf = b2Z2.manf AND
bl.name < b2.name;

35

Subqueries

= A parenthesized SELECT-FROM-WHERE
statement (subguery) can be used as a
value in a number of places, including
FROM and WHERE clauses

= Example: in place of a relation in the
FROM clause, we can use a subquery
and then query its result

= Must use a tuple-variable to name tuples of
the result

36

Example: Subquery in FROM

= Find the beers liked by at least one person
who frequents Cafe Chino . ..o

SFLECT beer / frequent C.Ch.

FROM Like (SELECT drinker
Fregquents

HERE bar = C.Ch.)CCD
WHERE Likes.drinker = CCD.drinker;

37

Subqueries That Return One Tuple

= If a subquery is guaranteed to produce
one tuple, then the subquery can be
used as a value
= Usually, the tuple has one component

= A run-time error occurs if there is no tuple
or more than one tuple

38

Example: Single-Tuple Subquery

= Using Sells(bar, beer, price), find the
nars that serve Pilsener for the same
price Cafe Chino charges for Od.Cl.

= Two queries would surely work:

1. Find the price Cafe Chino charges for Od.Cl.

2. Find the bars that serve Pilsener at that
price

39

Query + Subquery Solution

SELECT bar
FROM Sells
WHERE beer = " Pilsener’ AND
price = (SELECT price
FROM Sells
e price at /WHERE bar = ' Cafe Chino’
Which C.Ch. AND beer = " 0d.Cl.");

sells Od.Cl.

40

The IN Operator

= <tuple> IN (<subquery>) is true if and
only if the tuple is a member of the
relation produced by the subquery

= Opposite: <tuple> NOT IN (<subquery>)

= IN-expressions can appear in WHERE
clauses

41

Example: IN

= Using Beers(name, manf) and Likes(drinker,
beer), find the name and manufacturer of
each beer that Peter likes

SELECT *
FROM Beers
WHERE name|IN (SELECT beer
The set of FROM Likes
hes — WHERE drinker =
"Peter’);

42

What is the difference?

R(a,b); S(b,c)

SELECT a
FROM R, S
WHERE R.Db

SELECT a
FROM R
WHERE b IN

S.b;

(SELECT b FROM S) ;

43

IN is a Predicate About R’ s Tuples

SELECT a
FROM R
WHERE b IN

One loop, over
the tuples of R

Two 2’s

X

(SELECT b FROM S)j;

ab b c (1,2) satisfies

1 2 2.5 the condition;
3 4 2 6 1 is output once
R S

44

This Query Pairs Tuples from R, S

SELECT a
FROM R, S
WHERE R.b = S.Dbj;

a b 5’ C (1,2) with (2,5)
Double loop, over 12 " g and (1,2) With_
the tuples of R and S 3 4 (2,6) both satisfy
R S the condition;

1 is output twice

45

The Exists Operator

= EXISTS(<subquery>) is true if and only
if the subquery result is not empty

= Example: From Beers(name, manf),
find those beers that are the unique
beer by their manufacturer

46

Example: EXISTS

SELECT name Notice scope rule: manf refers
to closest nested FROM with
FROM Beers bl a relation having that attribute

WHERE NOT EXISTS (

Set of SELECT x |
\lxgveitehrsthe/v FROM Beers B 28?%2?
ranios | WHERE manf = b1.manf-AND operstor
1, ot name <> bl.name);

Ssame

beer
47

The Operator ANY

= x = ANY(<subquery>) is a boolean
condition that is true iff x equals at least
one tuple in the subqguery result

= = could be any comparison operator.
= Example: x >= ANY(<subquery>) means x

is not the uniquely smallest tuple produced
by the subquery

= Note tuples must have one component only

48

The Operator ALL

= x <> ALL(<subquery>) is true iff for
every tuple t in the relation, x is not
equal to t

= That is, x is not in the subquery result
= <> can be any comparison operator

= Example: x >= ALL(<subquery>)
means there is no tuple larger than x in
the subquery result

49

