
DM536
Introduction to Programming

Peter Schneider-Kamp
petersk@imada.sdu.dk!

http://imada.sdu.dk/~petersk/DM536/!

Python & Linux Install Party

§  next week (Tuesday 14-17)
§  NEW Fredagsbar (“Nedenunder”)

§  Participants are those
§  who want Python (& Swampy) on their computer,
§  who want Linux on their computer,
§  who want some study-related software on their computer,
§  who have problems with some study related software, or
§  who just like to hang out and help other people!

§  drinks and some snacks will be provided by IMADA!

June 2009 2

RECURSION:
SEE RECURSION

June 2009 3

Recursion is “Complete”

§  so far we know:
§  values of type integer, float, string
§  arithmetic expressions
§  (recursive) function definitions
§  (recursive) function calls
§  conditional execution
§  input/output

§  ALL possible programs can be written using these elements!
§  we say that we have a “Turing complete” language

June 2009 4

Factorial

§  in mathematics, the factorial function is defined by
§  0! = 1
§  n! = n * (n-1)!

§  such recursive definitions can trivially be expressed in Python
§  Example:

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 5

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 6

 n è 3

 n è 2

 n è 1

 n è 0

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 7

 n è 3

 n è 2

 n è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 8

 n è 3

 n è 2

 n è 1 recurse è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 9

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0
1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 10

 n è 3

 n è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 11

 n è 3

 n è 2 recurse è 1

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 12

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 13

 n è 3

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 14

 n è 3 recurse è 2

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 15

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 16

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Stack Diagram for Factorial

 __main__

 factorial

 factorial

 factorial

 factorial

June 2009 17

 x è 6

 n è 3 recurse è 2 result è 6

 n è 2 recurse è 1 result è 2

 n è 1 recurse è 1 result è 1

 n è 0

6	

2	

1	

1	

Leap of Faith

§  following the flow of execution difficult with recursion
§  alternatively take the “leap of faith” (induction)

§  Example:
 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result
 x = factorial(3)

June 2009 18

check the
base case

check the
step case

assume recursive
call is correct

Control Flow Diagram

§  Example: def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

June 2009 19

n == 0

recurse = factorial(n-1) True	

False	

result = n * recurse

return 1 return result

factorial(n)

Fibonacci

§  Fibonacci numbers model for unchecked rabbit population
§  rabbit pairs at generation n is sum of rabbit pairs at

generation n-1 and generation n-2

§  mathematically:
§  fib(0) = 0, fib(1) = 1, fib(n) = fib(n-1) + fib(n-2)

§  Pythonically:
 def fib(n):
 if n == 0: return 0
 elif n == 1: return 1
 else: return fib(n-1) + fib(n-2)

§  “leap of faith” required even for small n!

June 2009 20

Control Flow Diagram

§  Example: def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

June 2009 21

n == 0

True	

False	

return 0 return fib(n-1) + fib(n-2)

fib(n)

n == 1

return 1

True	

False	

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Problem: factorial(1.5) exceeds recursion limit

§  factorial(0.5)
§  factorial(-0.5)
§  factorial(-1.5)
§  …

June 2009 22

Types and Base Cases

 def factorial(n):
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 23

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 24

Types and Base Cases

 def factorial(n):
 if not isinstance(n, int):
 print "Integer required"; return None
 if n < 0:
 print "Non-negative number expected"; return None
 if n == 0:
 return 1
 recurse = factorial(n-1)
 result = n * recurse
 return result

§  Idea: check type at beginning of function

June 2009 25

Debugging Interfaces

§  interfaces simplify testing and debugging

1.  test if pre-conditions are given:
§  do the arguments have the right type?
§  are the values of the arguments ok?

2.  test if the post-conditions are given:
§  does the return value have the right type?
§  is the return value computed correctly?

3.  debug function, if pre- or post-conditions violated

June 2009 26

Debugging (Recursive) Functions

§  to check pre-conditions:
§  print values & types of parameters at beginning of function
§  insert check at beginning of function (pre assertion)

§  to check post-conditions:
§  print values before return statements
§  insert check before return statements (post assertion)

§  side-effect: visualize flow of execution

June 2009 27

ITERATION

June 2009 28

Multiple Assignment Revisited

§  as seen before, variables can be assigned multiple times
§  assignment is NOT the same as equality
§  it is not symmetric, and changes with time

§  Example:
 a = 42
 …
 b = a
 …
 a = 23

June 2009 29

from here,
a and b are equal

from here,
a and b are different

Updating Variables

§  most common form of multiple assignment is updating
§  a variable is assigned to an expression containing that variable

§  Example:
 x = 23
 for i in range(19):
 x = x + 1

§  adding one is called incrementing

§  expression evaluated BEFORE assignment takes place
§  thus, variable needs to have been initialized earlier!

June 2009 30

Iterating with While Loops

§  iteration = repetition of code blocks
§  can be implemented using recursion (countdown, polyline)

§  while statement:
 <while-loop> => while <cond>:
 <instr1>; <instr2>; <instr3>

§  Example: def countdown(n):
 while n > 0:
 print n, "seconds left!"
 n = n - 1
 print "Ka-Boom!"
 countdown(3)

 June 2009 31

n == 3 n == 3
True

n == 3 n == 3 n == 2 n == 2
True

n == 2 n == 2 n == 1 n == 1
True

n == 1 n == 1 n == 0 n == 0
False

n == 0

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  difficult for other loops:

 def collatz(n):
 while n != 1:
 print n,
 if n % 2 == 0: # n is even
 n = n / 2
 else: # n is odd
 n = 3 * n + 1

June 2009 32

Termination

§  Termination = the condition is eventually False
§  loop in countdown obviously terminates:

 while n > 0: n = n - 1
§  can also be difficult for recursion:

 def collatz(n):
 if n != 1:
 print n,
 if n % 2 == 0: # n is even
 collatz(n / 2)
 else: # n is odd
 collatz(3 * n + 1)

June 2009 33

Breaking a Loop

§  sometimes you want to force termination

§  Example:
 while True:
 num = raw_input('enter a number (or "exit"):\n')
 if num == "exit":
 break
 n = int(num)
 print "Square of", n, "is:", n**2
 print "Thanks a lot!"

June 2009 34

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)
§  for square root of a: f(x) = x2 – a f ’(x) = 2x
§  simplifying for this special case: xn+1 = (xn + a / xn) / 2

§  Example 1: while True:
 print xn
 xnp1 = (xn + a / xn) / 2
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 35

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if xnp1 == xn:
 break
 xn = xnp1

June 2009 36

Approximating Square Roots

§  Newton’s method for finding root of a function f:
1.  start with some value x0

2.  refine this value using xn+1 = xn – f(xn) / f ’(xn)

§  Example 2: def f(x): return x**3 - math.cos(x)
 def f1(x): return 3*x**2 + math.sin(x)
 while True:
 print xn
 xnp1 = xn - f(xn) / f1(xn)
 if math.abs(xnp1 - xn) < epsilon:
 break
 xn = xnp1

June 2009 37

Algorithms

§  algorithm = mechanical problem-solving process
§  usually given as a step-by-step procedure for computation

§  Newton’s method is an example of an algorithm
§  other examples:

§  addition with carrying
§  subtraction with borrowing
§  long multiplication
§  long division

§  directly using Pythagora’s formula is not an algorithm

June 2009 38

Divide et Impera

§  latin, means “divide and conquer” (courtesy of Julius Caesar)
§  Idea: break down a problem and recursively work on parts

§  Example: guessing a number by bisection
 def guess(low, high):
 if low == high:
 print "Got you! You thought of: ", low
 else:
 mid = (low+high) / 2
 ans = raw_input("Is "+str(mid)+" correct (>, =, <)?")
 if ans == ">": guess(mid,high)
 elif ans == "<": guess(low,mid)
 else: print "Yeehah! Got you!"

June 2009 39

Debugging Larger Programs

§  assume you have large function computing wrong return value
§  going step-by-step very time consuming

§  Idea: use bisection, i.e., half the search space in each step

1.  insert intermediate output (e.g. using print) at mid-point
2.  if intermediate output is correct, apply recursively to 2nd part
3.  if intermediate output is wrong, apply recursively to 1st part

June 2009 40

PROJECT PART 1

June 2009 41

Organizational Details

§  2 possible projects, each consisting of 2 parts
§  for 1st part, you have to pick ONE
§  for 2nd part, you can stay or you may switch

§  projects must be done individually, so no co-operation
§  you may talk about the problem and ideas how to solve them

§  deliverables:
§  written 4 page report as specified in project description
§  handed in electronically as a single PDF with appendix
§  deadline: October 3, 11:00

§  ENOUGH - now for the FUN part …

June 2009 42

Fractals and the Beauty of Nature

§  geometric objects similar to themselves at different scales

§  many structures in nature are fractals:

§  snowflakes
§  lightning
§  ferns

§  Goal: generate fractals using Swampy

§  Challenges: Recursion, Tuning, Library Use

June 2009 43

Fractals and the Beauty of Nature
§  Task 0: Preparation

§  understand implementation
of Koch snowflake

§  Task 1: Sierpinski Triangle
§  draw fractal triangle of

fixed depth

§  Task 2: Binary Tree
§  draw binary trees of fixed

depth

§  Task 3 (optional): Fern Time
§  draw beautiful fern leaves

with fixed detail
June 2009 44

From DNA to Proteins

§  proteins encoded by DNA base sequence using A, C, G, and T

§  Background:
§  proteins are sequences of amino acids
§  amino acids encoded using three bases
§  chromosomes given as base sequences

§  Goal: assemble and analyze sequences from files

§  Challenges: File Handling, String and List Methods, Iteration

June 2009 45

From DNA to Proteins

§  Task 0: Preparation
§  download human DNA sequence and take a look at it

§  Task 1: Assembling the Sequence
§  clean up the sequence and assemble it into one string

§  Task 2: Finding Starting Points
§  find positions in string where ATG closely follows TATAAA

§  Task 3: Finding End Points
§  find one of the potential end markers (TAG, TAA, TGA)

§  Task 4 (optional): Potential Proteins without TATA Boxes
§  analysis of overlaps in encoded proteins

June 2009 46

STRINGS

June 2009 47

Strings as Sequences

§  strings can be viewed as 0-indexed sequences

§  Examples:
 "Slartibartfast"[0] == "S"
 "Slartibartfast"[1] == "l"
 "Slartibartfast"[2] == "Slartibartfast"[7]
 "Phartiphukborlz"[-1] == "z"

§  grammar rule for expressions:
 <expr> => … | <expr1>[<expr2>]

§  <expr1> = expression with value of type string
§  index <expr2> = expression with value of type integer
§  negative index counting from the back

June 2009 48

Length of Strings

§  length of a string computed by built-in function len(object)

§  Example:
 name = "Slartibartfast"
 length = len(name)
 print name[length-4]

§  Note: name[length] gives runtime error

§  identical to write name[len(name)-1] and name[-1]
§  more general, name[len(name)-a] identical to name[-a]

June 2009 49

Traversing with While Loop

§  many operations go through string one character at a time
§  this can be accomplished using

§  a while loop,
§  an integer variable, and
§  index access to the string

§  Example:
 index = 0
 while index < len(name):
 letter = name[index]
 print letter
 index = index + 1

June 2009 50

Traversing with For Loop

§  many operations go through string one character at a time
§  this can be accomplished easier using

§  a for loop and
§  a string variable

§  Example:
 for letter in name:
 print letter

June 2009 51

Generating Duck Names

§  What does the following code do?

 prefix = "R"
 infixes = "iau"
 suffix = "p"
 for infix in infixes:
 print prefix + infix + suffix

§  … and greetings from Andebyen!

June 2009 52

String Slices

§  slice = part of a string
§  Example 1:

 name = "Phartiphukborlz"
 print name[6:10]

§  one can use negative indices:
 name[6:-5] == name[6:len(name)-5]

§  view string with indices before letters:

June 2009 53

P h a r t i p h u k b o r l z
0	

 1	

 2	

 3	

 4	

 1

5	

1
3	

9	

5	

 6	

 7	

 8	

 1
0	

1
1	

1
2	

1
4	

String Slices

§  slice = part of a string
§  Example 2:

 name = "Phartiphukborlz"
 print name[6:6] # empty string has length 0
 print name[:6] # no left index = 0
 print name[6:] # no right index = len(name)
 print name[:] # guess ;)

§  view string with indices before letters:

June 2009 54

P h a r t i p h u k b o r l z
0	

 1	

 2	

 3	

 4	

 1

5	

1
3	

9	

5	

 6	

 7	

 8	

 1
0	

1
1	

1
2	

1
4	

