python

powered

A

DM536 / DM550 Part |
Introduction to Programming

Peter Schneider-Kamp

peterskl@imada.sdu.dk
http://imada.sdu.dk/~petersk/DM536/

TURTLE WORLD &
INTERFACE DESIGN

Turtle World

= available from

= http://www.greenteapress.com/thinkpython/swampy/install.html

= basic elements of the library
= can be imported using from swampy.TurtleWorld import *
= w =TurtleWorld() creates new world w
= t =Turtle() creates new turtle t
= wait_for_user() can be used at the end of the program

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Simple Repetition

= two basic commands to the turtle
= fd(t, 100) advances turtle t by 100
= lt(t) turns turtle t 90 degrees to the left

= drawing a square requires 4x drawing a line and turning left
= fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); It(t); fd(t,100); lt(t)

= simple repetition using for-loop for <var> in range(<expr>):
<instr,>; <instr,>
= Example: for i in range(4):

print i

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Simple Repetition

= two basic commands to the turtle
= fd(t, 100) advances turtle t by 100
= lt(t) turns turtle t 90 degrees to the left

= drawing a square requires 4x drawing a line and turning left
= fd(t,100); lt(t); fd(t,100); lt(t); fd(t,100); It(t); fd(t,100); lt(t)

= simple repetition using for-loop for <var> in range(<expr>):
<instr,>; <instr,>
= Example: for i in range(4):
fd(t, 100)
It(t)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Encapsulation

= ldea: wrap up a block of code in a function
= documents use of this block of code

= allows reuse of code by using parameters

= Example: def square(t):

for i in range(4):

fd(t, 100)

It(t)
square(t)
u = Turtle(); rt(u); fd(u, 10); lt(u);
square(u)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= square(t) can be reused, but size of square is fixed

* ldea: generalize function by adding parameters
= more flexible functionality

" more possibilities for reuse

= Example I: def square(t, length):
for i in range(4):
fd(t, length)
It(t)
square(t, 100)
square(t, 50)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def square(t, length):
for i in range(4):
fd(t, length)
It(t)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, length):
for i in range(4):
fd(t, length)
It(t)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
for i in range(n):
fd(t, length)
It(t)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
for i in range(n):
fd(t, length)
It(t, 360/n)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
angle = 360/n
for i in range(n):
fd(t, length)
lt(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
angle = 360/n
for i in range(n):
fd(t, length)
lt(t, angle)
polygon(t, 4, 100)
polygon(t, 6, 50)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
angle = 360/n
for i in range(n):
fd(t, length)
lt(t, angle)
polygon(t, n=4, length=100)
polygon(t, n=6, length=50)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
angle = 360/n
for i in range(n):
fd(t, length)
lt(t, angle)

square(t, 100)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Generalization

= Example 2: replace square by regular polygon with n sides

def polygon(t, n, length):
angle = 360/n
for i in range(n):
fd(t, length)
lt(t, angle)
def square(t, length):
polygon(t, 4, length)
square(t, 100)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interface Design

Idea: interface = parameters + semantics + return value
= should be general (= easy to reuse)

= but as simple as possible (= easy to read and debug)

= Example:

def circle(t, r):
circumference = 2*math.pi*r
n=10
length = circumference / n
polygon(t, n, length)

circle(t, 10)

circle(t, 100)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interface Design

Idea: interface = parameters + semantics + return value
= should be general (= easy to reuse)

= but as simple as possible (= easy to read and debug)

= Example:
def circle(t, r, n):
circumference = 2*math.pi*r
H n=10
length = circumference / n
polygon(t, n, length)
circle(t, 10, 10)
circle(t, 100, 40)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Interface Design

Idea: interface = parameters + semantics + return value
= should be general (= easy to reuse)

= but as simple as possible (= easy to read and debug)

= Example:

def circle(t, r):
circumference = 2*math.pi*r
n = int(circumference / 3) + |
length = circumference / n
polygon(t, n, length)

circle(t, 10)

circle(t, 100)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def arc(t, r, angle):
arc_length = 2*math.pi*r*angle/360
n = int(arc_length / 3) + |
step_length = arc_length / n
step_angle = float(angle) / n

for i in range(n):
fd(t, step_length)
lt(t, step_angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def arc(t, r, angle):
arc_length = 2*math.pi*r*angle/360
n = int(arc_length / 3) + |
step_length = arc_length / n
step_angle = float(angle) / n

def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
t(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def arc(t, r, angle):
arc_length = 2*math.pi*r*angle/360
n = int(arc_length / 3) + |
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)
def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
t(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
t(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
t(t, angle)
def polygon(t, n, length):
angle = 360/n
polyline(t, n, length, angle):

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def arc(t, r, angle):

arc_length = 2*math.pi*r*angle/360
n = int(arc_length / 3) + |
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Refactoring

= we want to be able to draw arcs
= Example:
def arc(t, r, angle):
arc_length = 2*math.pi*r*angle/360
n = int(arc_length / 3) + |
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)
def circle(t, r):
arc(t, r, 360)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Simple Iterative Development

= first structured approach to develop programs:
|. write small program without functions

encapsulate code in functions

generalize functions (by adding parameters)

repeat steps |-3 until functions work

i > W

refactor program (e.g. by finding similar code)
= copy & paste helpful

* reduces amount of typing

" no need to debug same code twice

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging Interfaces

* interfaces simplify testing and debugging

|. test if pre-conditions are given:
* do the arguments have the right type!

= are the values of the arguments ok!?

2. test if the post-conditions are given:
" does the return value have the right type!

" is the return value computed correctly?

3. debug function, if pre- or post-conditions violated

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

CONDITIONAL EXECUTION

Boolean Expressions

= expressions whose value is either True or False

* logic operators for computing with Boolean values:

= xandy True if, and only if, x is True and y is True
" Xory True if (x is True or y is True)
" not x True if,and only if, x is False

= Python also treats numbers as Boolean expressions:
=0 False

= any other number True
= Please,do NOT use this feature!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Relational Operators

= relational operators are operators, whose value is Boolean

= important relational operators are:

Example True Example False
" x< 'y 23 <42 "World" < "Hej!"
" xX<=y 42 <=420 int(math.pi) <= 2
" X==y 42 ==42.0 type(2) == type(2.0)
"X>=y 42 >= 42 "Hej!" >= "Hello"
"X>y "World" > "Hej!" 42 > 42
" remember to use “==" instead of “="" (assighment)!

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Conditional Execution

= the if-then statement executes code only if a condition holds

= grammar rule:

<if-then> => if <cond>:
<instr,>; ...; <instr >
= Example: if x <=42:

print "not more than the answer”
if x > 42:

print "sorry - too much!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Graph

= Example: if x <=42:
print "not more than the answer"
if x > 42

print "sorry - too much!"

True

print "not more ..."

True

=> print "sorry - too ..."

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Alternative Execution

= the if-then-else statement executes one of two code blocks

= grammar rule:
<if-then-else> => if <cond>:

<instr,>; ...; <instr, >
else:
<instr’,>; ...; <instr’,.>
= Example: if x <=42:

print "not more than the answer’

else:

print "sorry - too much!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Graph

= Example: if x <=42:
print "not more than the answer"
else:

print "sorry - too much!"

True

print "not more ..."

print "sorry - too ..." -V

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Chained Conditionals

= alternative execution a special case of chained conditionals

= grammar rules:
<if-chained> => if <cond,>:
<instr, ,>;...; <instr, >
elif <cond,>:

else:

<instr, >;...; <instr,_ >

= Example: ifx>0: print "positive"”
elif x < 0: print "negative"
else: print "zero"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Control Flow Diagram

= Example: if x> 0: print "positive"
elif x < O: print "negative"

else: print "zero"

True

—> print "positive”

print "negative"

False
—> print "zero"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Nested Conditionals

*= conditionals can be nested below conditionals:

X = input()
y = input()
if x > 0:
ify > 0: print "Quadrant 1"
elify <0: print "Quadrant 4"
else: print "positive x-Axis"
elif x < 0:
if y > 0: print "Quadrant 2"

elify <0: print "Quadrant 3"
else: print "negative x-Axis"
else: print "y-Axis"

RECURSION

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example I:
def countdown(n):
if n <=0:
print "Ka-Boooom!"
else:
print n, "seconds left!"
countdown(n-1)

countdown(3)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Stack Diagrams for Recursion

__main__

countdown n > 3
countdown n > 2
countdown n > |
countdown n > 0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
lt(t, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Recursion

= 3 function can call other functions

= 3 function can call itself

= such a function is called a recursive function

= Example 2:
def polyline(t, n, length, angle):
if n > 0:
fd(t, length)
lt(t, angle)
polyline(t, n-1, length, angle)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Infinite Recursion

* base case = no recursive function call reached
= we say the function call terminates

= Example I: n == 0 in countdown / polyline

* infinite recursion = no base case is reached

= also called non-termination

= Example:
def infinitely often():
infinitely _often()

= Python has recursion limit 1000 — ask sys.getrecursionlimit()

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Keyboard Input

= so far we only know input()
= what happens when we enter Hello!?

= input() treats all input as Python expression <expr>

= for string input, use raw_input()
= what happens when we enter 42?

* raw_input() treats all input as string

= both functions can take one argument prompt

* Example |: a = input("first side: ")
= Example 2: name = raw_input(" Your name:\n")
= “\n” denotes a new line: print "Hello\nWorld\n!"

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem

= Example:

def determine_vat(base_price, vat_price):

real
problem

factor = base_price / vat_price

reverse_ factor = | / factor
return reverse_factor - |
print determine_vat(400, 500)

error
reported

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Debugging using Tracebacks

= error messages in Python give important information:
= where did the error occur?

= what kind of error occurred!?

= unfortunately often hard to localize real problem
= Example:
def determine_vat(base_price, vat_price):
factor = float(base price) / vat_price
reverse_ factor = | / factor
return reverse_factor - |
print determine_vat(400, 500)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

FRUITFUL FUNCTIONS

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O0:
return - |
elif x == 0:
return 0
else:

return |

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Return Values

= so far we have seen only functions with one or no return

= sometimes more than one return makes sense

= Example I:
def sign(x):
if x <O:
return -1
elif x == 0:
return O

return |

= important that all paths reach one return

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance

print "dx:", dx

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x1, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
print "dx:", dx

dy =y2 -yl # vertical distance
print "dy:", dy

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
print "dx:", dx

dy =y2 -yl # vertical distance
print "dy:", dy

dxs = dx**2; dys = dy**2
print "dxs dys:", dxs, dys

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2
print "dxs dys:", dxs, dys

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2
print "dxs dys:", dxs, dys
ds = dxs + dys # square of distance

print "ds:", ds

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance
print "ds:", ds

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x1, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance
print "ds:", ds

d = math.sqrt(ds) # distance

print d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance
print d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
print "x| yl x2 y2:",x1,yl, x2,y2

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance
print d

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)

def distance(x|, yl, x2, y2):

dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
dxs = dx™?2; dys = dy**2

ds = dxs + dys # square of distance

d = math.sqrt(ds) # distance

return d

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it
= Example: computing the distance between (x,,y,) and (X,,y,)
def distance(x|, yl, x2, y2):
dx = x2 - x| # horizontal distance
dy =y2 -yl # vertical distance
return math.sqrt(dx**2 + dy**2)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Incremental Development

" |dea: test code while writing it

|. start with minimal function
add functionality piece by piece
use variables for intermediate values

print those variables to follow your progress

A S

remove unnecessary output when function is finished

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Composition

= function calls can be arguments to functions

= direct consequence of arguments being expressions

* Example: area of a circle from center and peripheral point

def area(radius):

return math.pi * radius™*2

def area_from_ points(xc, yc, Xp, Yp):

return area(distance(xc, yc, Xp, Yp))

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
ify/ x*x==y: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

" boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:
def divides(x, y):
if y % x == 0: # remainder of integer division is 0
return True

return False

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x == 0

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

* boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution
= Example:

def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

= boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

def odd(x):
return not divides(2, x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

Boolean Functions

= boolean functions = functions that return True or False
= useful e.g.as <cond> in a conditional execution

= Example:
def divides(x, y):

returny % x == 0

def even(x):

return divides(2, x)

def odd(x):

return not even(x)

’%'UNIVERSITY OF SOUTHERN DENMARK.DK

