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Abstract We consider unary term rewriting, i.e., term rewriting with unary
signatures where all function symbols are either unary or constants. Terms over such
signatures can be transformed into strings by just reading all symbols in the term from
left to right, ignoring the optional variable. By lifting this transformation to rewrite
rules, any unary term rewrite system (TRS) is transformed into a corresponding string
rewrite system (SRS). We investigate which properties are preserved by this transfor-
mation. It turns out that any TRS over a unary signature is terminating if and only if the
corresponding SRS is terminating. In this way tools for proving termination of string
rewriting can be applied for proving termination of unary TRSs. For other rewriting
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28 R. Thiemann et al.

properties including confluence, unique normal form property, weak normalization
and relative termination, we show that a similar corresponding preservation property
does not hold.

Keywords Term rewriting · String rewriting · Termination · Confluence

1 Introduction

Every term over a unary signature, i.e., over only constants and unary symbols, can
be transformed into a corresponding string by just reading all function symbols in the
term from left to right, and ignoring the variable if the term contains a variable. By
lifting this transformation Str to rewrite rules, any unary TRS, i.e., a TRS over a unary
signature, can be transformed into a corresponding SRS. Here both the unary symbols
and the constants appear as string symbols. As an example consider the following
unary TRS R over the function symbols f, g, h, i of arity 1 and the constants b and c
(x is a variable). Its corresponding SRS is S = Str(R).

Example 1

R =
⎧
⎨

⎩

f(x)→ g(x)

f(x)→ h(b)

f(c)→ i(c)

⎫
⎬

⎭
S =

⎧
⎨

⎩

f→ g
f→ h b

f c→ i c

⎫
⎬

⎭

Note that for each term one can build a corresponding string, but not vice versa.
Some strings like h b g and f c g have no counter-part as a term.

There is also a difference between the rewrite relations→R and→S . The TRS
R in Example 1 contains all kinds of possible rules of a unary TRS: a rule with no
constants, a rule with one constant, and a rule with two constants. If one considers rules
of the first kind, then there is not much difference between the rewrite relation of R
and S. The context (resp. substitution) for the rewrite step with R directly correspond
to the left-context (resp. right-context) for the rewrite step with S. For rules of the
third kind there already is a small difference between the rewrite relations of R and
S. While it is not possible to instantiate the third rule in R, one can still use a right-
context when rewriting with S. This is important if one deals with strings like f c g
that cannot be represented as terms. However, using the second rule we detect an even
larger difference between→R and→S . Rewriting a term f(g(. . . )) by R results in
h(b) and hence, the subterm g(. . . ) is dropped. This does not happen if we consider
the corresponding rewrite step f g . . .→S h b g . . . with the SRS S. Here, the subterm
g . . . which was previously dropped remains present. In particular, h(b) is a normal
form w.r.t. R, whereas h b g . . . is not a normal form w.r.t. S if the string g . . . contains
a redex.

Now we arrive at the main topic of this paper: given an arbitrary unary TRS R, how
do typical rewrite properties like termination and confluence of R relate to the corre-
sponding properties of Str(R)? Due to the differences sketched above, the answers
to these questions are not obvious.

For the case where the unary TRS only has symbols of arity 1 and no constants,
it is well known that there is a one-to-one correspondence between the term rewrite
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Adding constants to string rewriting 29

steps and the string rewrite steps, by which all instances of the above question are
trivial. This paper is an investigation of the natural extension of this relationship when
constants are allowed in the TRS.

As a main result we achieve that any unary TRS R is terminating if and only if
Str(R) is terminating. This observation was already used in the termination prover
AProVE [4] for years, while the underlying theory was not yet published. For instance,
termination of the TRS consisting of the rules

double(s(x))→ s(s(double(p(s(x))))) p(s(s(x)))→ s(p(s(x)))

double(0)→ 0 p(s(0))→ 0

is easily proved by our transformation to SRS,1 while without this transformation
it is much harder. The reason is that there are several techniques which are only
applicable (or at least much easier to automate) for string rewriting than for term
rewriting. Examples for such methods include string reversal, semantic labelling [6],
etc. Consequently, many termination tools offer particular termination techniques that
are only applicable for SRSs and there are even tools like TORPA [7] which only
work for string rewriting. By our main theorem, these techniques and tools now also
become applicable for term rewriting on unary symbols and constants. For instance,
termination of the SRS resulting from the double-example is easily proved by TORPA.
In this way, the power of termination proving is increased.

Moreover, indirectly our main result also applies for termination of TRSs having
symbols of higher arity. The reason is that termination problems can often be trans-
formed into termination problems of unary TRSs by applying a suitable argument
filtering [1,3]. For instance, consider the following TRS.

plus(0, y)→ y p(s(s(x)))→ s(p(s(x)))

plus(s(x), y)→ s(plus(p(s(x)), y)) p(s(0))→ 0

When proving termination in the dependency pair framework [3] (as implemented for
example in AProVE [4]), the main proof obligation is solving the dependency pair
problem consisting of the dependency pair PLUS(s(x), y)→ PLUS(p(s(x)), y) and
the rules p(s(s(x))) → s(p(s(x))) and p(s(0)) → 0. After applying an argument
filtering that removes the second argument of PLUS, this problem can be solved by
proving termination of the unary TRS

p(s(s(x)))→ s(p(s(x))), p(s(0))→ 0, PLUS(s(x))→ PLUS(p(s(x))).

This can easily be done by our transformation to SRS, by applying string rewriting
techniques to prove termination, as above.

1 To prove termination of the resulting SRS, one can first perform string reversal:

s double → s p double s s s s p → s p s
0 double → 0 0 s p → 0

Now termination is easily shown by dependency pairs [1] and the embedding order.
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30 R. Thiemann et al.

For the properties

• unique normal form property in several variants,
• confluence and local confluence,
• weak normalization, and
• relative termination

we will show that a similar ‘if and only if’-property does not hold. For the unique
normal form property and its variants none of the directions holds; for the others, the
property for Str(R) implies the property for R. For all directions we either prove the
property or give a counterexample.

The paper is organized as follows. In Sect. 2 we introduce the required notions
and notations, and formally define the transformation from unary terms to strings
and backwards. Moreover, we present first basic results about these transformations.
Then in Sect. 3 we investigate the relation between one-step reductions of strings and
one-step reductions of unary terms. These results are needed to analyze the relation
between strings and unary terms if one regards further properties which involve more
than one reduction step. In the next sections we investigate the rewrite properties for
which the ‘if and only if’-property does not hold, concluded by our main result: the
‘if and only if’-property for termination. We conclude in Sect. 7.

2 Transformation between terms and strings

We assume familiarity with term and string rewriting (see [2] for details). We write
T (Σ,V) for the set of terms over the unary signature Σ and the set of variables
V . As mentioned, “unary” means that there are no symbols of arity > 1. In unary
term rewriting we never need more than one variable, so without loss of generality we
assume that V = {x}. For t ∈ T (Σ,V) we write [x := t] for the substitution replacing
this variable x by t .

The set of strings over Σ is Σ∗, where ε is the empty string. We use �, r, s, t, . . .
to denote terms, u, v, w, . . . to denote strings, a, b, c, . . . to denote constants, and
f, g, h, . . . to denote symbols of arity 1.

To convert unary terms to strings and vice versa we introduce three functions. The
function Str converts terms to strings by just ignoring parentheses and by eliminating
all variables. For the other direction from strings to unary terms, we use two functions.
The problem is that strings like u = f1 . . . fn a g1 . . . gm b h1 . . . hk with (former)
constants a and b in the middle cannot be completely represented as a term. Here,
the function Term returns the leftmost part of the string that can be represented as a
term and Drop delivers the part of the string that is dropped by Term. For example,
Term(u) = f1(. . . (fn(a)) . . . ) and Drop(u) = g1 . . . gm b h1 . . . hk . Definition 2
introduces these functions formally.

Definition 2 (Str , Term, and Drop) The functions Str : T (Σ,V)→ Σ∗, Term :
Σ∗ → T (Σ,V), and Drop : Σ∗ → Σ∗ are defined inductively by

Str(x) = ε Term(ε) = x Drop(ε) = ε

Str(a) = a Term(a w) = a Drop(a w) = w

Str(f(t)) = f Str(t) Term(f w) = f(Term(w)) Drop(f w) = Drop(w)
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Adding constants to string rewriting 31

for all unary symbols f of arity 1 and all constants a in Σ . The transformation Str is
applied on unary TRSs by defining

Str(R) = {Str(�)→ Str(r) | �→ r ∈ R}.

Before investigating the difference between the rewrite relation of a unary TRS
R and the rewrite relation of the corresponding SRS Str(R), we need some basic
properties of the functions from Definition 2.

Lemma 3 (Properties of Str , Term, Drop) Let t ∈ T (Σ,V), u, v ∈ Σ∗.

(1) t = Term(Str(t)).
(2) u = Str(Term(u))Drop(u).
(3) If V(t) = {x}, then Str(tσ) = Str(t)Str(xσ) for all substitutions σ .
(4) Term(u v) = Term(u) [x := Term(v)].
(5) If u contains a (former) constant, then Term(u w) = Term(u).
(6) If Term(u) contains a variable, then Drop(u) = ε.

Proof The lemma can be proved by straightforward inductions on t or u. ��

3 Comparing one-step reductions

For a unary TRS R and its corresponding SRS S = Str(R), our main goal is to
compare the rewrite relations of R and S. We start by investigating the difference
between one-step reductions with→R and→S and show that every→R-step can
be simulated by a corresponding→S -step. But for the other direction one can only
guarantee that every →S -step can be simulated by zero or one →R-step. This is
illustrated by the following diagrams:

s
R

�� t

u
S

��

Term

��

v

Term

�� u
S

��

Term
��

v

Term
��

Term(u)
=
R

�� Term(v)

The existence of the solid arrows implies the existence of the dotted arrows. Here,
→=R denotes the reflexive closure of→R (i.e.,→=R is→R ∪ =).

To illustrate the first diagram, consider the TRS R of Example 1 and let s = f(c),
t = i(c), and u = f c f. Then s →R t , Term(u) = s, and u →S v for the string
v = i c f with Term(v) = t . For the second diagram, let u = f c f and v = f c g. Now
we have u →S v, but Term(u) = f c = Term(v).

The following two lemmas formulate and prove the above observations.

Lemma 4 (Simulating term reductions by string reductions) Let s, t ∈ T (Σ,V),
let u ∈ Σ∗ be a string that corresponds to s (i.e., s = Term(u)), and let S = Str(R).
If s →R t , then there exists some v ∈ Σ∗ such that u →S v and t = Term(v).
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32 R. Thiemann et al.

Proof Using Lemma 3, the lemma can be proven by structural induction on s. If
the reduction is below the root, then the lemma directly follows from the induction
hypothesis. For a reduction at the root position, the result is easily obtained by a case
analysis on the three kinds of rules. ��

The above lemma shows that it is possible to simulate every reduction of a unary
term s by a reduction of a corresponding string u where the left part of u corresponds
to s (i.e., Term(u) = s). However, the right part Drop of the string is not involved.
Hence, if we now want to simulate string reductions by term reductions we obtain a
different result: only if the string reduction is in the left part of the string then we can
simulate it by a corresponding term reduction. But every reduction in the right part of
the string which is dropped by Drop will not change the corresponding unary term.

Lemma 5 (Simulating string reductions by term reductions) Let u, v ∈ Σ∗, let
S = Str(R). If u →S v, then Term(u) →=R Term(v). Moreover, if u →S v is a
reduction without left-context, then we have a root reduction Term(u)→R Term(v).

Proof We perform induction on u. We first consider the case of a reduction without
left-context u = Str(�)w→S Str(r) w = v where �→ r ∈ R. We can use Lemma
3 (4) and (1) to conclude

Term(u) = Term(Str(�)) [x := Term(w)] = � [x := Term(w)]
↓R

Term(v) = Term(Str(r)) [x := Term(w)] = r [x := Term(w)]

Next, let u = a w →S a w′ = v where w →S w′. Then obviously we obtain
Term(u) = a→=R a = Term(v).

Finally, let u = f w →S f w′ = v where w →S w′. By the induction hypothesis,
we get Term(u) = f(Term(w))→=R f(Term(w′)) = Term(v). ��

Based on the above observations on the relationship between one-step reductions
of strings and of terms, in the remaining sections we will investigate further properties
which involve more than one reduction step.

4 Unique normal form property

In this section we analyze some variants of the unique normal form property. Following
[5] we consider the following variants, all defined for an arbitrary abstract reduction
relation→:

• normal form property (NF):
if t ↔∗ u and u is a normal form, then t →∗ u;

• unique normal form property (UN):
if t ↔∗ u and t, u are normal forms, then t = u;

• unique normal form property with respect to reduction (UN→):
if t ←∗ · →∗ u and t, u are normal forms, then t = u.
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So UN→ means that every term has at most one normal form. The implications NF
⇒ UN⇒ UN→ are immediate from this definition.

We saw in Sect. 3 that in string reductions, we might obtain additional suffixes in
the strings which are not present in the corresponding terms. Thus, if an SRS produces
different normal forms where the difference is only in the suffix part of a string, then
it could be that as terms there is no difference anymore and we have unique normal
forms.

On the other hand, one could have different normal forms as terms but not with
strings: Consider strings with different prefixes and non-normalizing suffixes. The
suffixes prohibit normalization and hence these strings have no normal forms at all.
However, if we regarded the strings as terms, we would only look at the different
prefixes which may be normal forms.

The following theorem shows that both these situations can arise, for all three
variants of the normal form property.

Theorem 6 (Unique normal form property)

(1) There is a unary TRS R satisfying all three properties NF, UN, and UN→, while
Str(R) satisfies none of these three properties.

(2) There is a unary TRS R satisfying none of the three properties NF, UN, and
UN→, while Str(R) satisfies all of these three properties.

Proof (1) Define R and S = Str(R) by:

R =
{

f(b)→ f(a)

f(x)→ a

}

S =
{

f b→ f a
f→ a

}

R is confluent since it is terminating and locally confluent. The reason for the
latter is that the only critical pair consisting of f(a) and a is joinable. Then from
confluence we can conclude all three properties NF, UN, and UN→.
However in S, the string f b has two normal forms: f b →S f a →S a a and
f b →S a b. Hence S does not satisfy UN→. By NF ⇒ UN ⇒ UN→, we
conclude that S neither satisfies UN, nor NF.

(2) Define R and S = Str(R) by:

R =

⎧
⎪⎪⎨

⎪⎪⎩

a→ f(a)

a→ g(a)

f(x)→ b
g(x)→ c

⎫
⎪⎪⎬

⎪⎪⎭

S =

⎧
⎪⎪⎨

⎪⎪⎩

a→ f a
a→ g a
f→ b
g→ c

⎫
⎪⎪⎬

⎪⎪⎭

R does not satisfy UN→ as a reduces to two distinct normal forms b and c. By
NF⇒ UN⇒ UN→, R neither satisfies UN, nor NF.
However, for S the situation is different. Let v be a normal form in S and u ↔∗S v.
As v is a normal form, it does not contain the symbol a. From the shape of the
rules we conclude that only rules of the SRS S ′ = {f→ b, g→ c} are involved
in this conversion, i.e. u ↔∗S ′ v. Since S ′ is orthogonal and thereby confluent,
we know that S ′ satisfies NF. Thus, u →∗S ′ v must hold. As S ′ ⊆ S we obtain
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34 R. Thiemann et al.

the reduction u →∗S v which proves that S satisfies NF. The other two properties
follow from NF⇒ UN⇒ UN→. ��

5 Confluence

A stronger property than NF, UN, and UN→ is confluence. Here, every reduction
starting from the same term must be joinable (not only normalizing reductions). The
counterexample in the proof of Theorem 6 (1) in the previous section already shows
why confluence of a TRS does not imply confluence of the corresponding SRS: there
may be differences in the suffixes of the resulting strings, whereas these different
suffixes are dropped in the terms. Therefore, we will not obtain a positive result for
this direction.

However, our other counterexample from the previous section where non-
termination was the reason for unique normal forms will not work for confluence.
For confluence, reductions must be joinable regardless of normalization. Indeed, con-
fluence of an SRS implies confluence of the corresponding TRS. To give some intuition
on this result, consider what is necessary to obtain confluence of a string u that can be
reduced to v1 and v2. We must be able to join the strings v1 and v2 where we have to
join both the prefixes and the suffixes of v1 and v2. However, regarded as terms we only
have to join the prefixes which can be a strictly weaker requirement. The relationship
between confluence of TRSs and SRSs is stated and proved in Theorem 7.

Theorem 7 (Confluence) Let R be a unary TRS and let S = Str(R) be the corre-
sponding SRS.

(1) Confluence of S implies confluence of R.
(2) Local confluence of S implies local confluence of R.
(3) Confluence of R does not even imply local confluence of S.

Proof

(1) Let s →∗R t1 and s →∗R t2. We define u = Str(s). Then by Lemma 3 (1) we
conclude Term(u) = Term(Str(s)) = s. Thus, by Lemma 4 there exist strings
vi with u →∗S vi where ti = Term(vi ) for i ∈ {1, 2}. By confluence of S we
know that vi →∗S w for some string w. Lemma 5 finally implies joinability of t1
and t2, as ti = Term(vi )→∗R Term(w).

(2) The statement is proved as in (1).
(3) We can take the same counterexample as in the proof of Theorem 6 (1):

R =
{

f(b)→ f(a)

f(x)→ a

}

S =
{

f b→ f a
f→ a

}

The SRS S is not locally confluent. The string f b can be reduced in one step to
either f a or to the normal form a b. However, there is obviously no possibility to
reduce f a to a b as the only possible reduction of f a yields the normal form a a.
Nevertheless, R is confluent. As R is terminating, we only have to show local
confluence by joinability of critical pairs. The only critical pair of R is (f(a), a)

which is joinable by reducing f(a) to a by the second rule. ��
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6 Normalization

In this section we investigate properties related to normalization: weak normalization,
relative termination, and termination.

For weak normalization, i.e., the property that every term or string has a normal
form, we obtain the same results as for confluence: Weak normalization of an SRS
implies weak normalization of the corresponding TRS but not vice versa. The reason
is again that the suffix of a string can contain a non-normalizing part which is not
present in the corresponding term.

Theorem 8 (Weak normalization) Let R be a TRS and S = Str(R) be the corre-
sponding SRS.

(1) Weak normalization of S implies weak normalization of R.
(2) Weak normalization of R does not imply weak normalization of S.

Proof

(1) Let s be a term. We define u = Str(s) and get Term(u) = Term(Str(s))= s
by Lemma 3 (1). As S is weakly normalizing, u →∗S w for some S-normal form
w, By Lemma 5, s = Term(u)→∗R Term(w). Note that Term(w) must be an
R-normal form (i.e., s has a normal form, which proves weak normalization of
R). Otherwise by Lemma 4, w could be reduced further by→S . This contradicts
the fact that w is an S-normal form.

(2) Consider the following TRS and its corresponding SRS:

R =
{

a→ f(a)

f(x)→ b

}

S =
{

a→ f a
f→ b

}

R is weakly normalizing: All (sub)terms with root f or a can be reduced to b.
In this way, we obtain a term which does neither contain f nor a. Obviously, any
such term must be a normal form.
However, a is not weakly normalizing in S, since→S cannot delete occurrences
of a. But a string containing a is not in S-normal form. ��

A rewrite system R terminates relative to R′ if every R∪R′-reduction contains only
finitely many R-steps. For relative termination we get a similar result as for confluence
and weak normalization: the property for string rewriting implies the property for unary
term rewriting, but not vice versa.

Theorem 9 (Relative termination) Let R and R′ be unary TRSs and let S = Str(R)

and S ′ = Str(R′) be the corresponding SRSs.

(1) Termination of S relative to S ′ implies termination of R relative to R′.
(2) Termination of R relative to R′ does not imply termination of S relative to S ′.

123



36 R. Thiemann et al.

Proof

(1) Let S be terminating relative to S ′, but assume that R is not terminating relative
to R′. Then there is an infinite R ∪ R′-reduction t1 → t2 → . . . containing
infinitely many R-steps. By Lemma 3 (1) we know that u1 = Str(t1) satisfies
Term(u1) = Term(Str(t1)) = t1. We apply Lemma 4 to obtain ui →S∪S ′ ui+1
where Term(ui ) = ti for all i . Here we have ui →S ui+1 if ti →R ti+1, and
ui →S ′ ui+1 if ti →R′ ti+1. As a consequence we have an infinite S ∪ S ′-
reduction u1 → u2 → . . . containing infinitely many S-steps, contradicting the
termination of S relative to S ′.

(2) Consider the following TRSs and their corresponding SRSs:

R = {f(x)→ b} S = {f→ b}
R′ = {a→ f(a)} S ′ = {a→ f a}

R is terminating relative to R′ since each application of the R-rule reduces the
number of a-symbols. Hence, after finitely many R-steps, the resulting term
contains no a and thus, the R′-rule is not applicable anymore. However, R on
its own is obviously terminating.
But S is not terminating relative to S ′ due to the following reduction:

a→S ′ f a→S b a→S ′ b f a→S b b a→S ′ · · ·

��
Next we analyze termination, also called strong normalization, i.e., the property

that all reductions are finite. The result that termination of the corresponding SRS
implies termination of the TRS is a special case of Theorem 9. However, in contrast to
the previous theorems, here the converse direction holds as well, i.e., termination of a
TRS implies termination of the corresponding SRS. To prove this observation, we use
a basic theorem on dependency pairs. To do so, we first recapitulate some terminology
from [1].

For a TRS R over a signature Σ a symbol f ∈ Σ is called defined if f is the root
symbol of a left-hand side of a rule of R. For every defined symbol f ∈ Σ we add
a fresh function symbol F (typically denoted by the corresponding upper case letter)
where F and f have the same arity.

If f (s1, . . . , sn) → r is a rule in R and r contains a subterm g(t1, . . . , tm) for a
defined symbol g, then the rule F(s1, . . . , sn)→ G(t1, . . . , tm) is a dependency pair
of R. D P(R) denotes the TRS of all dependency pairs of R. An infinite R∪D P(R)-
reduction is called an infinite R-chain if

• all D P(R)-steps are root steps, and
• the reduction contains infinitely many D P(R)-steps.

Theorem 10 (Dependency Pair Theorem [1]) A TRS R is terminating if and only if
no infinite R-chain exists.

Now we show the connection between termination of TRSs and SRSs.
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Adding constants to string rewriting 37

Theorem 11 (Termination) Let R be a unary TRS and let S = Str(R) be the
corresponding SRS. Then R is terminating if and only if S is terminating.

Proof The ‘if’-part follows from part (1) of Theorem 9, where R′ is empty.
For the ‘only if’-part assume that R is terminating and S is not terminating. Then

according to Theorem 10 there is an infinite S-chain u1 → u2 → · · · , where each
reduction ui → ui+1 is either an S-step or a D P(S)-step without left-context. If it is
an S-step, then we have Term(ui )→=R Term(ui+1) by Lemma 5. If it is a D P(S)-
step without left-context, then we have a root step Term(ui )→D P(R) Term(ui+1) by
Lemma 5, using Str(D P(R)) = D P(S) which is obvious from the definition. Hence
by applying Term to all ui , the infinite S-chain u1 → u2 → · · · is transformed into
an infinite R-chain. By Theorem 10, this is a contradiction to the termination of R.

��

7 Concluding remarks

Our results can be summarized by the following table where “R 
⇒ S” indi-
cates whether a property of a TRS carries over to the corresponding SRS and where
“S 
⇒ R” indicates whether the converse direction holds.

Property R 
⇒ S S 
⇒ R
Normal form no no
Unique normal form no no
Unique normal form w.r.t. reductions no no
Local confluence no yes
Confluence no yes
Weak normalization no yes
Relative termination no yes
Termination yes yes

As the main result we consider the “if and only if” property for termination
(Theorem 11). We proved this using the well-known dependency pair result of The-
orem 10. It is also possible to prove Theorem 11 independent of dependency pairs
by analyzing how an arbitrary string splits up into smaller substrings correspond-
ing to unary terms, and by showing that every string rewrite step localizes to a term
rewrite step that corresponds to one of these smaller substrings. Then either a multiset
argument or a minimality argument has to be given. In our present proof a similar
minimality argument is hidden in the proof of the dependency pair result.
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