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1 Introduction

Combinatorial landscape theory provides a framework for the description of the
thermodynamics and kinetics of a large class of complex systems. It has been proven
to be a valuable concept in evolutionary biology, combinatorial optimization and the
physics of disordered systems.

The notion of a “fitness landscape” originated in theoretical biology as a tech-
inque to visualize evolutionary adaption in 1932 [25]. The basic ingredients are a
set of discrete genetic structures, a fitness function using to evaluate every possible
structure and a ”mutation” function measuring the feasibility of transitions between
pair of different structures. Due to the combined effects of mutation and selection,
a population moves uphill/downhill on the landscape which provides evolutionary
information in the form of accessibility or reachability. The intuitive of this theory
gives rise to the method “evolutionary algorithm” in computer science for global
search or solving combinatorial optimization problems such as the travelling sales-
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man problem. The equivalent notion of “energy landscapes” arose in physics as a
natural description of disordered systems. In spin glasses, for instance, each spin
configuration is assigned an energy describing its Hamiltonian which specifies the
model [1]. In theoretical chemistry, energy landscapes are viewed as discretized
models to approximate the smooth potential energy surfaces [16]. In structural bi-
ology, energy landscapes are used to understand the folding of biopolymers such as
RNAs and proteins into their three-dimensional structures [6].

In formal terms, a (combinatorial) landscape consists of a search space or con-
figuration space X = (V,T ) and a fitness or energy function f : V → R that evalu-
ates each configuration. In general, T denotes a (generalized) topological structure
on V . In this contribution we will restrict ourselves to the simplest case, namely
undirected finite graphs G = (V,E) as search spaces. Similarly, we will assume that
the values of f are real numbers. We refer to [8] for some insights into landscapes
over recombination spaces and to [20] for landscapes whose values are elements of
a partially ordered set. For the sake of clarity we adopt the picture of physics and
interpret f and an energy function so that we are interested in particular in configu-
rations with low energy and dynamics that tend to minimize f .

In this contribution we focus on geometric and topological features of land-
scapes, i.e., on properties that arise from the interplay of the structure of G with
the function f . These are of particular interest for an understanding of processes on
combinatorial landscapes that are governed by local transitions, including in par-
ticular a wide variety of heuristic optimization algorithms from simulated anneal-
ing to genetic algorithms. Although the relationship between dynamical processes
on combinatorial landscapes and geometric properties of the landscape itself has
been a long-standing research problem we still lack a satisfactory theory [18]. Some
progress has been made, however, in the analysis of the landscape structure itself.
The hierarchical structure of local minina and the barriers between their basins of
attraction plays a crucial role in this context.

2 Two examples

Before we proceed, let us briefly introduce two famous examples of combinatorial
landscapes:
(A) TSP-landscapes. The travelling salesman problem (TSP) is probably the most
frequently studied combinatorial optimization problem. Each potential solution to
the TSP is a cyclic permutation among n cities, each city occurs once. The config-
uration space of the TSP landscape consists of all potential solutions of TSP. Each
configuration is evaluated by the value of the distance of the total route. Two po-
tentail solutions are adjacent in the underlying graph of the TSP landscape if their
corresponding permutations can be transformed from each other by exchanging the
positions of two cities.
(B) RNA-landscapes. The RNA landscape may serve as a prototype for biophysi-
cally interesting landscapes. An RNA sequence can be viewed as a string over the
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Fig. 1 Energy landscapes. (A) The configuration space G = (V,E) of the RNA sequence
AACCCUU. consists of six secondary structures. Two structures x,y ∈V are adjacent, {x,y} ∈ E, if
x can be obtained from y by adding or removing a single arc. The folding energy f (x) of a config-
uration x is displayed in the box next to the structure. (B) Three types of walks that can be defined
on the landscape: a gradient walk 1→ 9→ 14→ 19 in which 9 is the unique gradient neighbor of
1, an adaptive walk 1→ 2→ 5→ 12→ 15 and a hill climbing walk 15→ 13→ 6→ 3.

alphabet over four bases {A,U,G,C} of length n. Given an RNA sequence s, an
RNA secondary structure is identified as a simple graph with vertex set {1, . . . ,n},
whose edge set consists of the edges {{i, i+1}|1≤ i≤ n−1}, together with a fur-
ther collection of edges Bs such that if {i, j}, {k, `} ∈ Ps with i < j and k < ` then
(i) the particular base combinations at pairing position i and j (k and `) must be AU,
GU, or GC; (ii) i = k if and only if j = `; (3) k ≤ j implies that i < k < ` < j. An
edge {i, j} contained in Ps is called a base pairs. Those vertices not contained in a
base pair are called unpaired. Condition (i) implies that each vertex is allowed to
belong to at most one base pair. Condition (ii) excludes the formation of crossing
base pairs, i.e. pseudoknots. For a given RNA sequence, the number of all valid sec-
ondary structures grows exponentially with the sequence length n. Its configuration
space of the RNA folding landscape consists of all the valid secondary structures.
Each secondary structure is called a configuration in the landscape. The energy of
a secondary structure is calculated by RNAeval in Vienna Package[11] based
on data from wet-lab experiments. Two configurations x,y are adjacent in the under-
lying graph, if y can be derived from x by adding or removing a base pair in x, see
Fig. 1(B).

3 Local Minima, Walks, and Degeneracy

In this section we introduce the basic notations and concepts. Throughout, we con-
sider a landscape (G, f ) on finite undirected graph G = (V,E) with a real-valued
energy function f : V →R. We reserve calligraphic letters for systems of subsets of
V and mappings between such systems.
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3.1 Neighbours and minima

We write N(x) = {y|{x,y} ∈ E} for the graph-theoretical neighborhood of a vertex
x in G. A vertex x ∈ V is a strict local minimum of (G, f ) if f (x) < f (y) for all
y ∈ N(x). If f (x) ≤ f (y), we call x a weak local minimum. A vertex x is a global
minimum, also called ground state if f (x) ≤ f (y) for all y ∈ V . Since V is finite, a
global minimum exists for all landscapes. It is not necessarily unique, however. The
set of weak local minima of (G, f ) will be denoted by M(G, f ).

A vertex y ∈ N(x) with f (x) = f (y) is a neutral neighbor of x. We say that
y ∈ N(x) is a gradient neighbor of x if f (y) = infz∈N(x) f (z) and f (z) < f (x). Hence
x has a gradient neighbor if and only if it is not a weak local minimum. In general,
a configuration can have more than one gradient neighbor.

For computational purposes it is often desirable to define a unique gradient
neighbor for each non-minimal vertex. An energy sorted list is a bijective map-
ping L : {1,2, . . . , |V |} →V with f (Li)≤ f (L j) for all indices i, j with i < j ≤ |V |.
Given L, a configuration x ∈ V \M(G, f ) is assigned the unique gradient neighbor
Li with i = min{ j : L j ∈ N(x)}, being the neighbor of x appearing earliest in the list.

3.2 Walks

An adaptive walk in (G, f ) is a sequence of configurations w1,w2, . . . ,w` such that
{wi−1,wi} ∈ E and f (wi−1) ≥ f (wi) for all 1 < i ≤ `. Adaptive walks are often
called “hill-climbing walks” in the context of maximization. A gradient walk is an
adaptive walk w1,w2, . . . ,w` such that wi is a gradient neighbor of wi−1 for 1 < i≤ `.
A neutral walk in (G, f ) is an adaptive walk such that wi is a neutral neighbor of
wi−1 for 1 < i≤ `.

A path is a walk in which no two vertices are visited twice. In particular, every
gradient walk is a path. Furthermore, we note that every walk contains a path that
is obtained by removing every part of a walk that leads from a vertex back to itself.
Since G is finite, every path is necessarily finite as well.

3.3 Degeneracy

Major technical complications in the analysis of discrete landscapes arise from de-
generacy, i.e., the presence of distinct vertices with the same value of f . A landscape
(G, f ) is non-degenerate if f (x) = f (y) implies x = y. This condition is too strong
for most practical applications since many landscape models have symmetries that
lead to degeneracies. For instance, the tours in a TSP can start and end in any city
along the way without changing the travel cost.

Denote by G f (x) the connected component of the induced subgraph G[{z ∈
V | f (z) = f (x)}] that contains x. In the local search literature, G f (x) is often called
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a plateau or neutral network [22]. Every neutral walk with starting configura-
tion x is by construction confined to G f (x). The relation x ∼ f y defined in V by
x ∼ f y⇔ y ∈ G f (x) is an equivalence relation and thus Π = {G f (x)|x ∈ V} is the
set of all the equivalence classes in V . Therefore, it forms a partition of V .

A landscape is locally non-degenerate or invertible on edges if the following
three equivalent conditions are satisfied: (i) G f (x) consists of a single vertex for all
x ∈ V ; (ii) there are no neutral walks on (G, f ); (iii) f (x) = f (y) implies y /∈ N(x).
Clearly, if (G, f ) is non-degenerate, then it is locally non-degenerate also. But the
inverse statement is not true.

We note that strict local minima need not exist unless the landscape is locally
non-degenerate. In the general case, therefore, we have to work with weak local
minima and to accommodate neutral walks.

3.4 Reachability

The concept of adaptive walks implies a simple concept of reachability among the
vertices of G: y is reachable from x, x y, if there is an adaptive walk (and hence
an adaptive path) starting at x that contains y. Naturally, one considers the system
of sets

C (x) = {y ∈V |x y} (1)

on (G, f ). Transitivity of immediately implies that C (y)⊆C (x) whenever x y,
and by construction x ∈ C (x). Furthermore, let us consider set-wise reachability

C (W ) =
⋃

x∈W

C (x) (2)

so that y ∈ C (W ) if there is a point z ∈ C (W ) from which y can be reached. As
shown in [19], the function C : 2V → 2V satisfies Kuratowski’s closure axioms and
hence defines the “reachability topology” on V .

4 Basins and saddles

For each weak local minimum x ∈M(G, f ) we define the gradient basin G (x) as the
set of configurations z ∈ V so that the unique gradient walk with starting point in z
ends in x. We note for later reference that {G (x)|x ∈M(G, f )} forms a partition of
V . Analogously, we define the adaptive basin A (x) = {z ∈ V |z x} for all local
minima x ∈ M(G, f ). In contrast to the gradient basins, the adaptive basins form
a covering of V that in general will not be a partition. By construction we have
x ∈ G (x)⊆A (x).

For x,y ∈M(G, f ) and s ∈V , we say that s is a gradient saddle between x and y
if (i) there are neighbours s′ ∈ N(s)∩G (x) and s′′ ∈ N(s)∩G (y) with f (s′), f (s′′)≤
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f (s); and (ii) s is a configuration with minimal energy fulfilling property (i). In this
case, we set the gradient saddle height GS(x,y) = f (s). We set GS(x,y) = ∞ if x
and y are not connected by a gradient saddle. This somewhat complicated definition
of gradient saddle is the one we gave in the funnels paper so I decided to reproduce
it here for consistency.

A direct saddle is defined analogously involving adaptive basins. We say that
s ∈ V is a direct saddle point between x and y if s is an element of A (x)∩A (y)
with minimal energy. For any two local minima we define the direct saddle height
DS(x,y) = f (s) if a direct saddle s between x and y exists. Otherwise we set
DS(x,y) = ∞.

If s is a direct saddle point between two local minima, it is also a gradient sad-
dle for some, but not necessarily the same two local minima. In general we have
DS(x,y)≤GS(x,y).

s

cad b

s 2s 1

(A)

ca b

s 2s 1 s 3

(B)

saddlesaddle
direct

saddle
gradient

( C )

Fig. 2 (A) Saddles and direct saddles. Given a landscape in which the configuration space con-
sists of {A,B,C,D,S1,S2,S3,S}, we have DS[A,D] = f (S) > S[A,D] = f (S1). Therefore, S and
{S1,S2,S3} is the direct saddle and the equivalent class of saddles between A and D, respec-
tively. Furthermore, there exists relation between saddle height and direct saddle heights given
by S[A,D] = min{max{DS[A,B],DS[B,C],DS[C,D]},DS[A,D]}. (B) Direct saddles and gradient
saddles. The configurations S1 and S2 are the direct saddles between A and C, but there does not
exist any gradient saddle between A and C. (C) A set diagram of the sets of saddles, direct saddles
and gradient saddles of a given landscape. Jing, please use the same symbols in the figure and the
caption. I suggest to lower-case letters for all configurations.

Would it not be easier to first define the" # relation and then use it for intro-
ducing saddle height?

The existence of a direct saddle point s between two local minima x and y implies
that there is a path ℘ in G from x to y so that f (v) ≤ f (s) for all v ∈℘. This not
necessarily the smallest bound on the “peak” of the path, however. Denote by Px,y
the set of all possible walks between x and y in G. The saddle height between any
two vertices is

S(x,y) = min℘∈Px,ymaxz∈℘ f (z) (3)

A configuration s∈V is a saddle point between two distinct local minima x,y∈M if
(i) f (s) = S(x,y) and (ii) there is a path ℘∈ Px,y so that f (s)≥ f (z) for all z ∈℘. In
contrast to gradient saddle points, thus, one can always find a saddle point since G is
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assumed to be connected. In the degenerate case, it is common that the saddle point
for two given local minima x,y is not unique. In this case, there exists an equivalence
relation ∼S between saddle points defined by Where is this used?

s1 ∼S s2⇔∃x,y ∈ G, s1 and s2 are saddles between x and y. (4)

It is well known that S is an ultrametric distance measure, i.e., S(x,y)≤max{S(x,z),S(y,z)}
for all z [17]. Obviously, we have S(x,y) ≤ DS(x,y). We illustrate the differences
between direct saddles, saddles, and gradient saddles in Fig. (2). We remark that
computing saddle heights and saddle points is a difficult task in general. For land-
scapes of RNA secondary structure, for instance, the problem is NP-hard [15].

We say that x and y are mutually accessible at level h, in symbols x" h# y, if
there is walk ℘∈ Px,y such that f (z) ≤ h for all z ∈℘. By construction, we have
x" h# y iff and only if h ≥ S(x,y). It is convenient to define the path connected
sets

Bh(x) = {y ∈V |x" h# y} . (5)

for h ≥ f (x). Trivially, x y implies x" h# y for all h ≥ f (x). Thus we have
C(y)⊆Bh(x) for all x ∈V , y ∈Bh(x), and h≥ f (x). Thus Bh(x) is a closed set in
the reachability topology.

The connection between direct saddles and saddles is elucidated in more detail by
the following result. Given a path P = (v0,v1, . . . ,v`,v`+1) ∈G, if vk > vk+1 = · · ·=
vl−1 < vl , then all the configurations w j ∈ L for k + 1 ≤ j ≤ l− 1 are called valley
points. Analogously, peak points are the configurations w j with k +1≤ j ≤ l−1 if
wk < wk+1 = · · ·= wl−1 > wl . A path ℘= (x = w0,w1, . . . ,w`,w`+1 = y) ∈ P(x,y)
is a zig-zag path on (G, f ) if

1. maxi f (wi) = S(x,y)
2. If wk > wk+1 = · · ·= wl−1 < wl then there is a minimal shelf L such that w j ∈ L

for k +1≤ j ≤ l−1.
3. If wk < wk+1 = · · · = wl−1 > wl then each w j with k + 1 ≤ j ≤ l− 1 is a direct

saddle separating the nearest valley points that the path℘passed before and after
w j .

(Please reformulate without using shelves or move after the definition of shelves in
the section on cvfs).

Theorem 1. If x,y ∈V are two configurations so that neither x y nor y x then
there is a zig-zag path connecting x and y.

Proof. By construction, x" S(x,y)# y, hence there is a path ℘ from x to y whose
height does not exceed S(x,y). Consider the graph G∗ = G/∼ f derived from G by
contracting any G f (x) ∈ Π into a vertex in G∗. In the meanwhile, we obtain a path
℘∗ in G∗ from ℘ accordingly.

To prove the theorem, all we need is to first construct a “zig-zag” path P∗ ∈ G∗

from ℘∗ and then prove the existence of a “zig-zag” path P ∈ G such that P∗ is the
resulted graph of P after the contraction. The latter is trivial since by construction,
G f (x) is connected for any x ∈G. Therefore the proof reduces to the construction of
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P∗ ∈ G∗ from ℘∗. This construction is desribed as follows and illustrated in Fig. 3.
Let {vi}t

i=1 denote the valley points in ℘∗. From each valley point vi, a gradient
walk is simulated to reach some local minimum `i. With out loss of generality, we set
v0 = `0 = x, vt+1 = `t+1 = y and assume that all `i are different configurations. In this
context, we observe that there exists a pair of hill-climbing walks from ”adjacent”
local minima `i and `i+1 to some peak point of ℘∗, denoted by pi. By definition,
f (pi) ≥ DS[`i, `i+1]. Depend on whether they are equivalent or not, there are two
cases. In case of f (pi) = DS[`i, `i+1], then we just substitute the pair of sections
([vi, pi], [pi,vi+1]) in ℘∗ into the pair of hill-climbing walks from `i and `i+1 to
pi, respectively. Otherwise, by definition, there must exist a configuration di such
that f (di) = DS[`i, `i+1] < f (pi). In this case, we substitute the pair of sections
([vi, pi], [pi,vi+1]) in ℘∗ into the pair of hill-climbing walks from `i and `i+1 to di,
respectively.
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Fig. 3 An example to illustrate the construction (℘→℘∗→ P∗→ P) in the proof of Theorem 1.
In which, bold lines in grey denote the path in G f (z), z ∈ {p1, `1, p3}.

For each saddle point s, the basin below s [7] is the set B(s) := B f (s)(s) of con-
figurations that can be reached from s by a path along which the energy of the con-
figurations on the path never exceeds f (s). An obvious connection between basins
below saddle points and adaptive basins is the following:

B(s)⊆
⋃

x∈B(s)∩M(G, f )

A (x) (6)

The analogous result for gradient walks holds only in non-degenerate landscapes.
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It is not hard to verify that for any two saddles s′ and s′′ either B(s′) ⊆B(s′′),
B(s′′)⊆B(s′), or B(s′′)∩B(s′) = /0 is satisfied, i.e., the basins of a landscape give
rise to a hierarchical structure [7]. This hierarchical structure is naturally represented
by the barrier tree [24] whose leafs are the local minima and whose interior vertices
are the saddles.

5 Barrier Trees

Methods to elucidate the basin structure of landscapes by means of barrier trees have
been developed independently in different contexts. For instance, potential energy
surfaces for protein folding [23, 10], molecular clusters [3] and the kinetics of RNA
landscapes [7].

The barrier tree can by computed by the program barriers [7] via a flooding algo-
rithm more refs on flooding algorithms. The program barriers takes an energy sorted
list of the K configurations as input. This list may contain either all configurations
or only the configurations below some threshold energy. The only part of barri-
ers that relys on the geometric properties of the configuration space is the routine
that generates all neighbors of each configuration in the list. Therefore, barriers
with a time complexity of O(∆ ×K), where ∆ denotes the maximum number of
neighbors for a configuration in the landscape. To be precise, the program barriers
proceeds each configuration on the list consecutively. First identifies local minima
if it reads one. Each configuration x is then labeled by the lowest minimum L such
that x ∈Ba(L). In the meanwhile, any configurations that with the same energy is
decomposed into connected components. The program then checks for each com-
ponent whether it is a component of saddle points. For each adaptive basin Ba(L)
appears in the barrier tree, the program also records the number of configurations in
this basin and the partition function over them etc. .

6 Funnels

The presence of a large number of non-global local minima poses a difficulty for
optimization, i.e., identifying movement towards global optima based on purely lo-
cal information about the landscape. Several measures quantify this difficulty [12]
also termed the ruggedness of a landscape. Despite being rugged, natural folding
landscapes of biopolymeres (cf. the example in Section 2) allow for fast folding, i.e.
a Markov chain quickly hits the global minimum after a relatively short time. The
picture of a funnel [2] has been used for an arrangement of local minima and saddles
that guide dynamics towards the optimum. In the following we present a rigorous
definition of a funnel as the set of configurations that reach the global minimum by
iterating exits from gradient basins over the lowest gradient saddle.
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Fig. 4 Funnel digraph for the folding landscape of the RNA sequence xbix
(CUGCGGCUUUGGCUCUAGCC). The funnel of the landscape contains the local minima
F ∩M = {1,7,11,17,18,27}, node 1 being the unique ground state. In the funnel partition of the
landscape, the set containing node 2 is the largest. This is consistent with the observation that a
large part of the folding trajectories reach the node 2 whose energy lies 0.8 kcal above the energy
of the ground state [24]. Figure reproduced from ref. [13].

First let us define the gradient saddle network of a landscape as a graph (M(G, f ),A)
having as vertices the weak local minima of the landscape (G, f ). Two local minima
x,y ∈M, x 6= y form an edge {x,y} ∈ A if there is a gradient saddle separating x and
y. The gradient saddle network is also called inherent structure network [4].

The funnel digraph (M,B) includes arcs as transitions over the lowest gradient
saddles. A pair of local minima (x,y) ∈M2 is contained in the arc set B if and only
if {x,y} ∈ A and

DS(x,y) = min{DS(x,z) : z ∈M,{x,z} ∈ A} . (7)

The funnel of the landscape is a set F ⊆V containing those weak local minima,
from which there is a directed path to a global minimum. Equivalently, the funnel
may be defined recursively [13] as follows.

(i) F contains all global minima.
(ii)A local minimum x ∈M belongs to the funnel F if the funnel digraph contains

an edge {x,y} ∈ B with y ∈ F .

Thus F ∩M is the maximal subset of M containing all global minima and fulfilling
for all x,y ∈M:
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x /∈ F ∧ (x,y) ∈ B⇒ y /∈ F (8)

This determines which local minima belong to F . The funnel is completed by in-
cluding in F all nodes in the gradient basins of these minima.

In practice, the funnel digraph may be obtained by Algorithm 1. Analogous to
barriers, it scans the landscape from low to high energy. Each node x is assigned
the local minimum c(x) reached from x by a gradient walk, where c(x) = x in the
case that x is a local minimum itself. The set C contains all local minima reachable
by gradient walks from the neighbours N− of x that have occurred previously in the
loop. If C contains more than one element, x may be a saddle point between pairs of
local minima. It is a lowest saddle point (lowest energy exit) for a local minimum
r ∈C, if the current energy f (x) is the lowest energy h(r) at which r appears in C
together with other minima. In this case, each pair (r,q) with q ∈C\{r} is an arc of
the funnel digraph.

Algorithm 1 computes the arc set B of the funnel digraph
Require: A landscape (V,E, f ) with neighbourhood function N.
Require: An energy sorted list L : {1,2, . . . , |V |} →V .

B← /0
for all i ∈ {1, . . . , |V |} do

x← Li
N− = N(x)∩{Li|i < j}
if N− = /0 then

c(x)← x // x is a local minimum
h(x)←+∞

else
j∗ = min{ j < i : L j ∈ N−} // index of gradient neighbour of x
c(x)← c(L j∗ )
C←{c(y) : y ∈ N−}
if |C|> 1 then

for all r ∈C do
if e(r) = +∞ then

h(r)← f (x) // first appearance of exit from r
end if
if h(r) = f (x) then

for all q ∈C \C \{r} do
B← B∪{(r,q)}

end for
end if

end for
end if

end if
end for

After finding the funnel F of the landscape, one may be interested in the land-
scape outside the funnel. Thus the funnel may be removed and the residual land-
scape analyzed the same way. Iterating this procedure leads to the the funnel parti-
tioning of a landscape, being a family F1,F2, . . . ,Fk. Here F1 = F is the funnel of the
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landscape itself and, for all 2 ≤ i ≤ k Fi is the funnel of the landscape restricted to
the subgraph induced by V \

⋃i−1
j=1 Fj.

The identification of funnels relies on knowledge of the gradient saddle network.
For applied studies of real landscape instances, exact computation requires enu-
meration of all configurations or at least detection of all direct saddles. It is thus
restricted to small instances [21]. In larger landscapes, the saddle network may be
obtained by efficient sampling methods [14].

7 Combinatorial vector fields on graphs

7.1 basics

Given (G, f ) we write N>(x) = {y ∈ N(x)| f (x) > f (y)} and N>[x] = N>(x)∪{x}
and call x a drainage point if N>(x) 6= /0. Furthermore, we set N>(W ) =

⋃
z∈W N>(z)

for any subset W ⊆V .
For a detailed investigation into the structure of adaptive walks on (G, f ) we

will need the neutral components together with their downhill neighbors. To this
end we define for every subgraph H of G the subgraph

−→
H with vertex set V (

−→
H ) =⋃

x∈V (H) N>[x] and edge set E(
−→
H ) = E(H)∪

{
{x,y} ∈ E|x ∈ V (H),y ∈ N>(x)

}
.

A particular role is played by the neutral components G f . We call a graph
−−−→
G f (x)

a shelf of (G, f ). For every shelf A =
−−−→
G f (x) of (G, f ) we distinguish between the

“flat surface” Aflat = V (
−−−→
G f (x)) of the shelf, i.e., the vertices of of G f (x), and its exit

points A> = {y ∈ N>(x′)|x′ ∈V (
−−−→
G f (x))}.

Shelves are constructed such that their flat surfaces form a partition of the vertex
set of G while their edge sets form a partition of the edge set of G [19]. In locally
non-degenerate landscapes, the flat surfaces consist of single points so that each
shelf consists of a vertex and its downhill neighbors.

A shelf is locally minimal if A> = /0. In this case A>⊆M(G, f ), i.e., all vertices of
locally minimal shelves are local minima. The converse is not true: shelves with exit
points may also contain weak local minima. All strict local minima, are of course,
correspond to locally minimal shelves that consist of a single vertex only.

Here we consider only the special case of combinatorial vector fields (cvf) on
simple undirected graphs. For the general case we refer to [9].

Definition 1. A combinatorial vector field (cvf) on G is a map η : V → E ∪{∅}
such that, for all e = {x,y} ∈ E, η−1(e) ∈ {∅,{x},{y}}.

It is easy to show that CVFs on G are in one-to-one correspondence with the rela-
tions P⊂V ×V that satisfies

1. (x,y) ∈ P implies {x,y} ∈ E (consistency with G)
2. (x,y) ∈ P and (x,z) ∈ P implies y = z (uniqueness)
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(A) (B)

Fig. 5 (A) Example of a small highly degenerate landscape. Vertices of G are arranged according
to the fitness values f (x). Connected componentes G f (x) are indicated by dotted boxes. For one

of them, the corresponding shelf-graph
−−−→
G f (x) is highlighted in gray. A combinatorial vector field

η (consistent with f ) can be visualized as arrows correponding to the set Pη of oriented edges. (B)
Combinatorial vector fields on a single shelf satisfied condition (A1).

3. (x,y) ∈ P implies (y,x) /∈ P (antisymmetry)

The correspondence is established by (x,y) ∈ P if and only if η(x) = {x,y} [19].
We can therefore interpret a cvf as a subset P of directed edges so that each vertex
has at most one successor. Note that in contrast to the outgoing arc, the number of
incoming arcs is not restricted.

A vertex x ∈V is a rest point of η if η(x) = ∅, i.e., if x has not successor. The η-
trajectory of x is the sequence of vi, i≥ 0, of vertices such x = v0 and (vi,vi+1) ∈ P.
Thus a trajectory either ends in a rest point or it has infinite lengths. In the letter case
it contains a finite directed cycle (limit cycle) that is visited infinitely often. The ω-
limit ωη(x) of a vertex x is either the (unique) rest point y at which the trajectory
starting at x comes to an end, or the limit cycle in which it becomes trapped. Clearly
for all x ∈V , ωη(x) 6= /0 and a vertex y is a rest point if and only if ωη(y) = {y}.

The chain recurrent set Rη of a combinatorial vector field η on G is defined as

Rη =
⋃
x∈V

ωη(x) (9)

i.e., it consists of the rest points and limit cycles.

Definition 2. Let η be a combinatorial vector field on G. A function f : V ∪E→ R
is a Lyapunov function for η if

1. f (v)≥ f (e) > f (v′) if η(v) = e and e = {v,v′} and v /∈Rη .
2. f (v) = f (η(v)) = f (v′) if v 6= v′ and v′ and v are contained in a cycle.

The basic idea of [19] is now to study adaptive walks in terms of combinato-
rial vector fields on G for which the prescribed energy function f is a Lyapunov
function. For convenience, we also consider the weaker condition

• (A1) η(x) = {x,y} implies f (x)≥ f (y).
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and call a function of satisfying (A1) a weak Lyapunov function for η .
The crucial observation is that the ensembl of cvfs that have f as weak Lyaponov

function together describe in a meaningful way all possible adaptive paths on (G, f ):
every adaptive path alternates between strictly downhill steps that take it from one
shelf to the next and neutral paths along which it traverses a shelf from its entry
point to an exit point.

From a technical point of view, the crucial result is that the set of all combinato-
rial vector fields on G has a product structure: it can be written as the set product of
the sets of combinatorial vector fields on the individual shelves. Since consistency
of a cvf with a given (weak) Lyapunov function also boils down to conditions that
only refer to the individual shelves separately (see [19] for the technical details). It
follows that the set combinatorial vector fields consistent with f is the direct product
of the sets of combinatorial vector fields consistent with f on the individual shelves.

The importance of this result is the observation that it is sufficient to understand
the admissible combinatorial vector fields on the shelves. In particular, it implies that
combinatorial vector fields on locally non-degenerate landscapes are entirely char-
acterized by their behavior on the trivial shelves

−−−→
N>(x). If there are large shelves,

on the other hand, quite complex vector field structures can be consistent with con-
dition (A1) because degenerate fitness functions impose fewer constraints on the
combinatorial vector fields. In particular they admit complex recurrent sets within
individual sets.

7.2 Partition functions, path probabilities, reachability

Now consider a weight function ω : E→R defined on the edges of G. Since we are
considering landscapes, we derive the weight function ω from the landscape (G, f ).
Interpreting f as a potential energy function, the most natural choice are Boltzmann
weights of the form

ω({x,y}) = exp(β | f (x)− f (y)|) (10)

These weights increase with the steepness of the landscape along the edge. The
“inverse temperature” β tunes our emphasis on steepness: For β = 0, all valid tran-
sitions receive the same weight 1. On the other hand, the steepest edges dominate in
each set N>(x) for β → ∞.

A natural choice for the weight of a combinatorial vector field on G is then

ω(η) = ∏
(x,y)∈η

ω({x,y}) (11)

In which, ω({x,y}) is defined as in eqn. 10. The partition function of all combina-
torial vector fields on (G, f )

Z = ∑
η

ω(η) (12)
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and its restriction to combinatorial vector fields that contain a particular transition
(u,w) ∈ Pη .

Z(u,w) = ∑
η :(u,w)∈η

ω(η). (13)

With Boltzmann weights, equ.(10), Z simply counts the number of distinct combi-
natorial vector fields in the limit β = 0. On the other hand, ω(η)/Z→ 0 unless η

consists of edges of steepest descent only in the limit β → ∞.
The weights ω(η) can be written as a product of the weights of restrictions of η

to the shelves of G,
ω(η) = ∏

A∈−→Π

ω(ηA) (14)

Theorem ?? therefore implies immediately that the partition functions are also prod-
ucts of partition functions restricted to the individual shelves:

Z = ∑
η

ω(η) = ∑
η

∏
A∈−→Π

ω(ηA) = ∏
A∈−→Π

∑
ηA

ω(ηA) = ∏
A∈−→Π

ZA (15)

Similarly, we can evaluate restricted partition functions such as

Z(u,w) = ∏
A∈−→Π

{u,w}/∈E(A)

∑
ηA

ω(ηA)×Z′(u,w) = Z′(u,w)× ∏
A∈−→Π

{u,w}/∈E(A)

ZA (16)

where Z′(u,w) is evaluated just like equ.(13) restricted to the shelf that contains the
edge {u,w}.

For locally non-degenerate landscapes, these expressions are simplified greatly
because each shelf contains only one “top point”, say x, and edges of the form {x,y}
with y ∈ N>(x). Thus

Z = ∏
x∈V

Zx and Z(u,w) = ∏
x∈V\{u}

Zx×Z′(u,w) (17)

with
Zx = ∑

y∈N>(x)
ω(x,y) and Z′(u,w) = ω(u,w). (18)

In the case of locally degenerate landscapes, on the other hand, the computa-
tion of the partition functions for the individual shelves can be quite tedious and
complex.

In the spirit of statistical mechanics, we endow the set of all combinatorial vector
fields on (G, f ) with the discrete probability measure

p(η) := ω(η)/Z (19)

In particular, then, the probability of picking a combinatorial vector field that con-
tains the arc (u,w) ∈ Pη is given by



16 Konstantin Klemm, Jing Qin and Peter F. Stadler

p(uw) = Z(u,w)/Z =
1

ZA
∑

η∈CVFX(A)
(u,w)∈η

ω(η) = Z′(u,w)/ZA , (20)

where A ∈ −→Π is the (unique) shelf that contains the edge {u,w} ∈ E(A). In other
words, p(uw) is determined only by the combinatorial vector field on the shelf in
which the restriction is defined.

Let us now consider trajectories connecting two vertices x and y. More precisely,
we are interested in the probability to draw a combinatorial vector field that contains
an arbitrary trajectory from x to y. We write x y for the set of all such trajectories
in (G, f ). Let x ∈ Ax ∈

−→
Π . Then

P{x y} :=
1
Z ∑

η

x y∈η

ω(η) =
1
Z ∑

z∈A>
x

∑
η−→

Π \Ax
z y

∑
ηAxx z

ω(η−→
Π \Ax

)ω(ηAx) (21)

The partition function Z, on the other hand, can be decomposed in the following
way:

Z = ∑
η

ω(η) = ∑
η−→

Π \Ax

ω(η−→
Π \Ax

) ∑
ηAx

ω(ηAx) = Z−→
Π \Ax

ZAx (22)

Substituting this decomposition into equ.(21) yields

P{x y}= ∑
z∈A>

x

∑
η−→

Π \Ax
z y

1
Z−→

Π \Ax

ω(η−→
Π \Ax

)× 1
ZAx

∑
ηAxx z

ω(ηAx) (23)

In order to compute this transition probability explicitly, we first consider paths
within a shelf. Let us introduce the notation

Tx z =
1

ZAx
∑
ηAxx z

ω(ηAx) (24)

for the probability of a path within the shelf Ax from x∈ Aflat
x to z∈V (Ax)>. In other

words, we consider paths that start in the “flat” part of the shelf, maybe stay on the
flat for a while, and then end with a single downward step.

Before we proceed, we remark that Tx z can be computed trivially if the land-
scape is locally non-degenerate. Indeed, in this case x z can be realized exclu-
sively by the arc (x,z) ∈ Pη , and hence

Tx z = ω(x,z)/Z{x} Z{x} = ∑
y∈N>(x)

ω(x,y) . (25)

In general, the situation is more complicated since we may have a nontrivial path
in Aflat

x to some drainage point, say w, before taking the arc (w,z) to the exit point
z. In the following let Dx = {u ∈V (Aflat

x )|N>(u) 6= /0} denote the drainage points in
Aflat

x . We have
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Tx z =
1

ZAx
∑

u∈Dx

∑
η

Aflat
xx u

∑
η ′

on N>(u)
z∈N>(u)

ω(η)ω(η ′) (26)

Introducing

T >
w→z :=

1
Z{w}

∑
η ′

on N>(w)
z∈N>(w)

ω(η ′) =
1

Z{w}
ω(w,z) (27)

we can rewrite equ.(26) in the form

Tx z = ∑
w∈Dx

Z{w}
ZAx

∑
η

on Aflat
xx w

ω(η)T >
w→z (28)

We finally define the abbreviation

T flat
x w :=

Z{w}
ZAx

∑
η

on Aflat
xx w

ω(η) (29)

and obtain the Tx y with x ∈ Aflat
x and y ∈ A>

x as

Tx y = ∑
w∈Dx

T flat
x wT >

w→y (30)

The probability P̃(x y) of a path that starts in x and terminates in y such that
the final step is a downward step can be computed recursively because any path of
this type consists of disjoint subpaths of the type described by equ.(24). The first
subpath runs from the startand point x to some exit point u ∈ N>(V (G f (x))), and
continues from there to y.

P̃(x y) = ∑
u∈N>(V (G f (x)))

Tx uP̃(u y) (31)

For fixed y, eq.(31) can be evaluated iteratively for all x with increasing fitness values
f (x) > f (y) and the following initializations: If f (x) < f (y) then P̃(x y) = 0
because of condition (A1). If f (x) = f (y) then P̃(x y) = T flat

x w if G f (x) = G f (y),
and P̃(x y) = 0 otherwise.

An arbitrary path from x to y, finally, is either of the type described by equ.(31),
or it enters G f (y) at a vertex z ∈ V (G f (y)) and continues within this set until it
reaches y. Thus, the probability to reach y from x is

P(x y) = ∑
z∈V (G f (y))

P̃(x z)T flat
z y (32)

For completeness, finally, we set P(x x) = 1.
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Definition 3. A vertex y is unreachable from x on (G, f ) if there is no combinatorial
vector field η that contains a trajectory from x to y.

In other words, y is unreachable from x if and only if P(x  y) = 0. Note that
this notion of “unreachable” is a slightly more precise way of saying “there is no
adaptive walk from x to y”.

A vertex set W is mutually reachable if for all x,y ∈W we have P(x y) > 0
and P(y x) > 0. Note that if the landscape is invertible on edges then all sets of
mutually reachable points are trivial, consisting of a single vertex.

For each x ∈V we define the set

C(x) = {y ∈V |P(x y) > 0} (33)

of vertices reachable from x. By construction, x ∈C(x). Furthermore, y ∈C(x) im-
plies C(y) ⊆C(x) because reachability is a transitive relation. It will be convenient
to define C(W ) =

⋃
x∈W C(x).

These are Kuratowski’s axioms for a closure function of V , see e.g. [8]. Thus,
C is a closure function that defines a (finite) topology τC on V . Clearly, a set W is
closed in (V,τC) if it consists exactly of all vertices reachable from W . We call τC
the reachability topology of the landscape. We note in passing that it may also be
of interest to study in more detail the generalized, not idempotent, closure function
defined by reachability on a single shelf.

In the following, we will need a characterization of connected sets.

Lemma 1. A set W is connected in the topological space (V,τC) if and only if there
is a (finite) sequence x = x0,x1, . . . ,xl = y such that xi ∈C(xi−1) or xi−1 ∈C(xi), i.e.,
if and only if P(xi−1 xi) > 0 or P(xi xi−1) > 0.

Proof. Recall that, in any topological space, the set C({x}) is connected and the
union of two intersecting connected sets is also connected. The condition above
amounts to the existence of a (finite) chain of connected sets connecting any two
points in W . Hence W is connected whenever the condition is satisfied. Conversely,
suppose there is no such chain between x and y. Then there is a maximal set U ⊂W
of points that are connected to x, while y /∈U . For every z ∈W \U , C(z)∩U = /0
and z /∈C(U). Thus C(W \U)∩U = /0 and C(U)∩ (W \U) = /0, i.e, W violates the
Hausdorff-Lennes condition for connectedness.

7.3 (cvf)-Valleys, basins and direct saddles

In the following we will also need a slightly modified notion of maximality w.r.t.
set inclusion. Usually, a set A is maximal for a property Q if A has propery Q but
A∪ {x} does not have property Q for all x /∈ A. Here we need to modify this to
“A∪Rx does not have property Q for all x /∈ A” where Rx is the set of mutually
reachable points.
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The topology τC provides a useful device to describe the structure of the land-
scape. A natural notion is that of a “(cvf)-valley”:

Definition 4. A (cvf)-valley is a maximal connected subset W ⊆ V (G) such that all
vertices y /∈W are unreachable from every x ∈W and W is connected.

If W is a (cvf)-valley, then x ∈W implies C(x) ⊆W since by definition no vertices
outside of W are reachable from within W . Therefore, W =

⋃
x∈W C(x) = C(W ).

The (cvf)-valleys are therefore the maximal closed connected sets w.r.t. the topology
defined by C.

Consider a locally minimal shelf G f (x) and set L := V (G f (x)). Local minimality
means N>(L) = /0. Thus L together with the set of all points z for which every
adaptive walk ends in L forms a (cvf)-valley WL.

More generally, minimal closed sets correspond to the vertices that are restpoints
in all admissible combinatorial vector fields, C(x) = {x}, or to unions (again over all
admissible combinatorial vector fields) of∼η equivalence classes. By transitivity of
reachability, these sets are of the form {y ∈ V |P(x y > 0) and P(y x > 0)} 6=
{x}. Every adaptive walk in the landscape necessarily ends in one of these minimal
closed sets. We can therefore label every x ∈ V by the collection Ξ(x) of minimal
closed sets that are reachable from x, Fig. 6 (A).

(A) (B)

Fig. 6 (cvf)-Valley: (A) Each vertex is annotated with the list of reachable local minima. Each
(cvf)-valley is characterized by such a list ϒ and contains all vertices labeled by a subset if ϒ .
The minimal closed subsets, here {1} through {5} are always (cvf)-valleys. In addition, this land-
scape has the (cvf)-valleys {1,2}, {2,3}, {4,5}, {3,4,5}, and {1,2,3,4,5}. (cvf)-Valley connect-
ing points are indicated by circles. (B) here are 7 (cvf)-valleys denoted A to G. The minimal
(cvf)-valleys are A through D corresponding to the four local minima of the landscape. The (cvf)-
valleys A and B are connected by the direct saddle point s. The direct saddle q between A and C
has a strictly higher energy than saddle u between the same two (cvf)-valleys (assuming that there
is no adaptive walk connecting u with a point in A). It is a saddle between A and D because it is
the direct saddle between the (cvf)-valleys E and D and A ⊆ E. The barrier tree of the landscape
reflects the inclusion relations of the (cvf)-valleys: A,B⊆ E, C,D⊆ F, E,F⊆ G. The (cvf)-valley
G corresponds to the entire landscape.

A (cvf)-valley can be identified by the set ϒ of minimal closed sets that it con-
tains.
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Lemma 2. A subset W ⊆ V (G) is the (cvf)-valley labeled by ϒ if and only if (i) W
is connected, (ii) x ∈W implies Ξ(x)⊆ϒ , and (iii) Ξ(x)⊆ϒ implies x ∈W.

Proof. Suppose W satisfies (i), (ii), and (iii). We first observe that (ii) implies that
W is closed because every vertex y reachable from x ∈W satisfies Ξ(y) ⊆ Ξ(x),
and hence y ∈W . To see that W is maximal, we argue as follows: Consider a vertex
z ∈ V \W . By (iii), Ξ(z) 6⊆ ϒ . If z is contained in a minimal closed set C /∈ ϒ ,
i.e., Ξ(z) = {C}, then W ∪{z} is not connected because by construction z is not
reachable from within W and no vertex in W can be reached from within C. On the
other hand, if z is not contained in a minimal closed set C, then there is a minimal
closed set C′ ∈ Ξ(z) \ϒ , and in particular a vertex z′ ∈C′ that is reachable from z.
Since z′ /∈W ∪{z} while z′ ∈ C(W ∪{z}), we we conclude that W ∪{z} is not a
closed set. Thus W is a maximal connected closed set.
Now suppose that W is a maximal closed connected set, and set ϒ =

⋃
x∈W Ξ(x).

Then (ii) is trivially true and W contains in particular all minimal closed sets C ∈
ϒ . Now suppose that there is a vertex z /∈W with Ξ(z) ⊆ ϒ . All adaptive walks
emanating from z thus eventually reach W and all vertices y along such a walk
satisfy Ξ(y) ⊆ Ξ(z) ⊆ϒ . Hence we can expand W by the last mutually reachable
subset Ry outside of W , contradicting maximality. Hence Ξ(z)⊆ϒ implies z /∈W .

The (cvf)-valleys of the landscape (G, f ) do not form a hierarchical structure.
In Fig. 6 (A), the valleys {1,2} and {2,3} are a counterexample. Nevertheless, the
(cvf)-valleys are closely related to the barrier trees of the landscape. In particular,
we can identify the (lowest) points that connect (cvf)-valleys with each other.

Definition 5. A vertex u ∈V is a (cvf)-valley connecting vertex if Ξ(u)Ξ(v) 6= /0 for
every v ∈C(u)\Wu, where Wu is the set of vertices that are mutually reachable from
u.

In general, there can be multiple, disconnected, (cvf)-valley connecting vertices
linking the same two (cvf)-valleys. In Fig. 6 (A), there are two vertices connect-
ing the (cvf)-valleys {1} and {2}, which have different fitness values.

In order to connect our present discussion with earlier work, in particular [5, 7,
24], we briefly discuss the notation of saddle points in the context of our present
formalism.

Definition 6. A vertex s is a direct saddle point separating two minimal closed sets
W1 and W2 if (i) there are points y1 ∈W1 and y2 ∈W2 with P(s y1) 6= 0 and
P(s y2) 6= 0, and (ii) there is no vertex s′ with f (s′) < f (s) that also has property
(i).

A direct saddle point is therefore a (cvf)-valley connecting point with minimal fit-
ness connecting two (cvf)-valleys. In [8], basins of a landscape are discussed that
are defined in terms of the connected components of {x ∈ V | f (x) < η} where η

is the fitness of a saddle point. This connects well to our present discussion. The
subsets of (cvf)-valleys below a certain fitness threshold are always connected sets.
Thus, basins are connected sets of the form
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W∈V
{x ∈W | f (x) < η} (34)

constructed from maximal collections of (cvf)-valleys W ∈ V . Saddle points, i.e.,
vertices of minimal fitness that connect distinct basins are therefore necessarily
(cvf)-valley connecting points between (cvf)-valleys associated with the distinct
basins that they merge. Given an arbitrary pair of disjoint (cvf)-valleys, their di-
rect saddle can have a strictly larger value of f than the saddle point connecting the
associated basins, Fig. 6 (B).

We remark, finally, that the flooding algorithm implemented in the barriers
program [5, 7] identifies saddle points as the lowest energy points that have neigh-
bors with lower energy that are connected by means of gradient descent walks to
local minima in two distinct valleys. This is equivalent to the existence of two adap-
tive walks starting at the saddle points that terminate in the same local minima. This
flooding algorithm can easily be modified to keep track of the labelling Ξ(x). In the
non-degenerate case, Ξ(x) is simply the union of the set Ξ(y) of all neighbors of x
that are reachable. In the degenerate case one has to keep track of all neighbors of
the set Wx that is mutually reachable from x as described in [7]. This gives rise to
the recursion

Ξ(x) =
⋃

x′∈Wx

⋃
y∈N(x′)∩C(x)

Ξ(y) (35)

Valley-connecting points are therefore recognizable in the course of the flooding
algorithm as those vertices x for which the union Ξ(x) does not coincide with the
label set Ξ(y) of at least one of the downward neighbors y.
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