
DM207

I/O-Efficient Algorithms and Data Structures

Fall 2011

Rolf Fagerberg

IOEADS Fall 2011 Page 1

Prologue

You are working for MegaHard R©, a large software firm whose latest

product is the programming language D♭.

Your boss tells you to expand its standard library to include a sorting

routine.

You are a well-trained computer scientist, and fondly remember your

algorithms course, where you learned that sorting can be done in time

O(n logn), and that this is optimal.

Browsing through your old textbook, you again delight in the details of

the three O(n log n) algorithms you were taught:

Heapsort, Mergesort, Quicksort,

each ingenious and beautiful in its own way. Which one to choose?

IOEADS Fall 2011 Page 2

Prologue

What about the constants involved in the O-notation?

You search the literature, and learn that the exact number of

comparisons for all three algorithms are quite similar: they all lie between

n logn and 2n log n

You even inspect the code and conclude that the ratio between

comparisons and other basic operations seem quite alike for all three

algorithms.

Tough choice.

But there are other qualities to a sorting algorithm:

IOEADS Fall 2011 Page 3

Prologue

Quicksort is only expected O(n logn) time (not worst case).

Mergesort needs extra space besides the input array (not inplace).

Summing up:

Worstcase Inplace

QuickSort
√

MergeSort
√

HeapSort
√ √

Knowing that your boss loves a one-size-fits-all solution, you decide on

Heapsort.

IOEADS Fall 2011 Page 4

Prologue

However, Friday night you are bored. You decide to implement all three

algorithms, to have some fun.

You then run them all on inputs of random ints, for growing input

sizes n.

You measure running time in seconds, and plot time/n logn as a

function of n.

By your analysis above, you know this should generate horizontal lines

for all three algorithms, with height of line revealing the constant in the

O(n logn) bound for the algorithm.

Here is the result:

IOEADS Fall 2011 Page 5

Reality-check

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Heapsort
Mergesort
Quicksort

IOEADS Fall 2011 Page 6

What happened?

 0

 5e-09

 1e-08

 1.5e-08

 2e-08

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Heapsort
Mergesort
Quicksort

L2 L3 Cache RAM

IOEADS Fall 2011 Page 7

Standard model for analysis of algorithms

The standard model:

Memory

CPU

• Add: 1 unit of time

• Mult: 1 unit of time

• Branch: 1 unit of time

• MemoryAccess: 1 unit of time ← Realistic?

IOEADS Fall 2011 Page 8

Reality

Memory hierarchy:

CPU Reg. Cache1

RAM

DiskCache2

Tertiary Storage

Access time Volume

Registers 1 cycle 1 Kb

Cache 5–10 cycles 1 Mb

RAM 50–100 cycles 1 Gb

SSDisk 300,000 cycles 0.1 Tb

HDisk 30,000,000 cycles 1 Tb

IOEADS Fall 2011 Page 9

Reality

Many real-life problems of Terabyte and even Petabyte size:

• weather

• geology/geography

• astrology

• financial

• WWW

• phone companies

• banks

IOEADS Fall 2011 Page 10

Memory bottleneck

Memory access the bottleneck

⇓
Memory access should be optimized

(not (just) instruction count)

We need new models for this.

IOEADS Fall 2011 Page 11

Analysis of algorithms

New I/O-model:

CPU

Memory 2

Block

Memory 1

Aggarwal, Vitter, 1988Parameters:

N = no. of elements in problem.

M = no. of elements that fits in Memory 1.

B = no. of elements in a block on disk.

Cost: Number of I/O’s (block transfers) between Memory 1 and 2.

IOEADS Fall 2011 Page 12

Simple Example

Consider two O(N) algorithms:

1. Memory accessed randomly ⇒ page fault at each memory access.

2. Memory accessed sequentially ⇒ page fault every B memory

accesses.

O(N) I/Os vs. O(N/B) I/Os

Typically for RAM: B = 4− 8. For disk: B = 103 − 105.

105 minutes = 70 days, 105 days = 274 years. Factor B can be make or break.

IOEADS Fall 2011 Page 13

Back to the sorting algorithms

QuickSort, MergeSort ∼ sequential access

HeapSort ∼ random access

So in terms of I/Os:

QuickSort: O(N log(N)/B)

MergeSort: O(N log(N)/B)

HeapSort: O(N log(N))

IOEADS Fall 2011 Page 14

Course Contents

• The I/O-model(s).

• Algorithms, data structures, and lower bounds for basic problems:

– Permuting

– Sorting

– Searching (search trees, priority queues)

• I/O-efficient algorithms and data structures for problems from

– computational geometry,

– strings,

– graphs.

Along the way I: Principles for designing I/O-efficient algorithms.

Along the way II: Lots of beautiful algorithmic ideas.

Along the way III: Hands-on experience via projects.

IOEADS Fall 2011 Page 15

Course Style

Lectures:

• Theoretical (in the style of DM507, DM508, DM206,. . .).

• New stuff: 1995-2011.

• Aim: Principles and methods.

Project work:

• Several small/moderate projects (3 ECTS in total).

• Aim: Hands-on (programming), thinking (theory).

IOEADS Fall 2011 Page 16

Course Formalities

Literature:

• Based on lecture notes and articles.

Prerequisites:

• DM507, DM508 (and a BA-degree).

Duration:

• 3rd and 4th quarter.

Credits:

• 10 ECTS (including project).

Exam:

• Project (pass/fail), oral exam (7-scale).

IOEADS Fall 2011 Page 17

Statement of Aims

After the course, the participant is expected to be able to:

• Describe general methods and results relevant for developing

I/O-efficient algorithms and data structures, as covered in the

course.

• Give proofs of correctness and complexity of algorithms and data

structures covered in the course.

• Formulate the above in precise language and notation.

• Implement algorithms and data structures from the course.

• Do experiments on these implementations and reflect on the results

achieved.

• Describe the implementation and experimental work done in clear

and precise language, and in a structured fashion.

IOEADS Fall 2011 Page 18

Basic Results in the I/O-Model

To be proved in the course:

Scanning: Θ(N
B
)

Sorting: Θ(N
B
logM

B

(N

M
))

Permuting: Θ(min{N, N

B
logM

B

(N

M
))})

Searching: Θ(log
B
(N))

Notable differences from standard internal model:

• Linear time = O(N
B
) 6= O(N)

• Sorting very close to linear time for normal parameters

• Sorting = permuting for normal parameters

• Permuting > linear time

• Sorting using search trees is far from optimal (N x search >> sort).

IOEADS Fall 2011 Page 19

Basic Results in the I/O-Model

Scanning: Θ(N
B
)

Sorting: Θ(N
B
logM

B

(N

M
))

Permuting: Θ(min{N, N

B
logM

B

(N

M
))})

Searching: Θ(log
B
(N))

Scanning is I/O-efficient (O(1/B) per operation).

Hence, a few algorithms and data structures (selection, stacks, queues)

are I/O-efficient (O(1/B) per operation) out of the box, with the right

implementation details (see next slide).

Most other algorithmic tasks need rethinking and new ideas.

IOEADS Fall 2011 Page 20

Stacks and Queues

With constant number of blocks in RAM:

O(1/B) I/Os per Push/Pop operation.

· · ·

O(1/B) I/Os per Dequeue/Enqueue operation.

· · · · · ·

(The above illustration is for array implementations of stacks and

queues. The same analysis will hold if they are implemented as a linked

list of blocks of B elements.)

IOEADS Fall 2011 Page 21

Selection
Recall the problem: For (unsorted) set of elements, find the kth largest.

The classic linear time (wrt. CPU time) algorithm:

1. Split into groups of 5 elements, select median of each.

2. Recursively find the median of this set of selected elements.

3. Split entire input into two parts using this element as pivot.

4. Recursively select in relevant part.

Step 1 and 3 are scans, step 2 recurse on N/5 elements, and none of the

lists made in step 3 are larger than around 7N/10 elements.

As (N/B) is the solution to T (N) = O(N/B) + T (N/5) + T (7N/10),

T (M) = O(M/B), the algorithm is also linear in terms of I/Os.

(This holds assuming the memory touched by a recursive call (including

all sub-calls) is contiguous, and that e.g. LRU caching is done.)

IOEADS Fall 2011 Page 22

