
Sorting

Upper and Lower bounds

[Aggarwal, Vitter, 88]

Page 1

Part I: Upper Bound

Page 2

Standard MergeSort

Merge of two sorted sequences ∼ sequential access

→ · · ·
· · ·
· · ·

MergeSort: O(N log2(N/M)/B) I/Os

Page 3

Multiway Merge

· · ·

· · ·
· · ·
· · ·
· · ·

→

• For I/O-efficient k-way merge of sorted lists we need:

M ≥ B(k + 1)⇔M/B − 1 ≥ k

• Number of I/Os: 2N/B.

Page 4

Multiway MergeSort

• N/M times sort M elements internally ⇒ N/M sorted runs of size

M .

• Merge k runs at a time, giving (N/M)/k sorted runs of size kM .

• Merge k runs at a time, giving (N/M)/k2 sorted runs of size k2M

• . . . repeat until only a single run remains.

At most logk N/M phases, each using 2N/B I/Os. Largest k is M/B-1.

O(N/B logM/B(N/M)) I/Os

Note: we use loga(b) as shorthand for max{loga(b), 1} (the above is not

correct without this).

Page 5

Multiway MergeSort

Note that

1 + logM/B(x) = logM/B(M/B) + logM/B(x) = logM/B(x ·M/B)

Therefore

O(N/B logM/B(N/M)) = O(N/B logM/B(N/B))

Defining

n = N/B and m = M/B

we get

Multiway MergeSort: O(n logm(n))

Page 6

Multiway QuickSort (DistributionSort)

Multiway splitting according to k splitting elements:

· · ·

· · ·
· · ·
· · ·
· · ·

←

• For I/O-efficient k-way distribution of sorted lists we need:

M ≥ B(k + 1)⇔M/B − 1 ≥ k

• Number of I/Os: 2N/B.

• We would also like to choose the k elements elements such that k is

sufficiently large and the split is even (all subsequences are

sufficiently reduced in size).

Page 7

Finding Partitioning Elements

Lemma: We can in O(N/B) I/Os choose
√

M/B partitioning elements

such that each subsequence is of size at most N/Θ(
√

M/B).

For proof of lemma, see handout.

Since log√y(x) = log2(x)/ log2(y
1/2) = 2 logy(x), it is easy to see that

logΘ(
√
y)(x) = Θ(logy(x))

for all y and x.

Hence, an analysis somewhat similar to that for multiway mergesort gives

that an I/O-optimal sorting algorithm based on distribution is possible.

Page 8

Part II: Lower Bound

Page 9

The Model

View memory as single array of cells, each holding one element. First M

cells are the internal memory.

· · ·
Int. Memory Disk

Comparison-based version of the I/O-model. The only allowed

operations are:

• Comparison of elements in internal memory.

• Moving, copying, destroying elements in internal memory.

• Read/Write: transfer B contiguous elements between disk and

internal memory. Source cells are copied, target cells are overwritten.

Assume M ≥ 2B. Wlog I/Os are assumed block-aligned (since a

non-block-aligned I/O may be simulated using Θ(1) block-aligned I/Os).

Page 10

The Sorting Problem

• At start, input elements

x1, x2, x3, x4, x5, x6, x7, . . . , xN

reside in the first N cells outside internal memory.

• When algorithm stops, it should tell which of the N ! possible

permutations

x7, x2, x113, xN , x46, x1, . . . , x6

of the input will make it sorted.

• We only consider inputs where all elements are different (enough for

a lower bound). For these, exactly one permutation makes the input

sorted.

Page 11

Adversaries

Adversary : An algorithm giving answers to comparisons performed by a

sorting algorithm.

Answers must be consistent: there should always exist at least one

permutation

x7, x2, x113, xN , x46, x1, . . . , x6

such that all answers given are true if this permutation makes the input

sorted (ie., there should exist at least one possible input justifying the

answers of the adversary).

Intuition of lower bound is that new comparisons can only be made by

bringing new elements together in internal memory. This requires I/Os.

The goal of an adversary is to give as little new order information as

possible for each new I/O. We need to quantify order information.

Page 12

Quantifying Order Information

Represent the answers of adversary by a directed graph G = (V,E):

• V = {x1, x2, x3, . . . , xN}
• (xi, xj) ∈ E iff adversary was asked to compare xi and xj , and

answered xi < xj .

A permutation

x7, x2, x113, xN , x46, x1, . . . , x6

is called compatible with the graph if all edges go from left to right

wben nodes are laid out linearly according to this permutation.

(In DM507 such a permutation of the nodes is called a topological sort

of the graph, and it is proved that one exists iff the graph is acyclic)

The more compatible permutations remain, the less order information

has been given by the adversary (ie., the more inputs are still possible).

Page 13

Order Information Dynamics

Given a sorting algorithm, an adversary algorithm, and a simultaneous

run of the two, we let Gt be the graph after t I/Os have taken place,

and let St be the set of permutations compatible with Gt.

We have:

• Adversary must maintain |St| ≥ 1 (⇔ Gt acyclic) for consistency.

• |S0| = N ! (initial graph G0 has no edges, so all permutations are

compatible).

• |St| is a decreasing function of t (Gt only gets more edges).

• A correct sorting algorithm cannot stop before |St| = 1 (if |St| > 1,

adversary can still choose between several possible inputs, hence

prove algorithms answer wrong).

Page 14

Adversary Definition

At each Read, the contents of internal memory changes, allowing new

comparisons.

Adversary will settle answers to all new comparisons made possible, and

add the corresponding edges to Gt. Hence, edges in Gt always form a

superset of those implied by the actual comparisons requested by the

algorithm.

Adversary will settle these answers by deciding on one total order of the

elements currently in internal memory, among all such orders compatible

with previously settled answers (edges in Gt), ie., among all such orders

that keep Gt acyclic when adding all the edges implied by the order.

For the tth I/O, let Xt denote the number of such orders. It remains to

describe which of these possible orders the adversary chooses.

Page 15

Adversary Definition

Each choice of such order (of elements in internal memory) induces a

different Gt, hence a different St (recall, this is a subset of all

permutations). For the family of possible St’s, the following holds:

• They are contained in St−1 (as edges only get added to graph).

• They cover all of St−1 (as any member (a permutation of all input

elements) of St−1 determines a specific order of the elements

currently in internal memory, and will be compatible with the Gt

induced by that choice of order (hence will be in that St)).

• None of them overlap each other (as any permutation of the input

elements determines a specific order of the elements currently in

internal memory, and can only be compatible with the Gt induced

by that choice of order (hence can only be in that St)) – any other

order must have at least one of the added edges reversed.

Page 16

Adversary Definition

In other words: the family of possible St’s forms a partition of St−1.

In particular, their sizes sum to the size of St−1.

If we assume |St| < |St−1|/Xt for all the possible St’s, we get a

contradiction via

|St−1| = sum of sizes < Xt(|St−1|/Xt) = |St−1|

Hence, there exist at least one possible St such that

|St| ≥ |St−1|/Xt

The adversay after I/O number t chooses the order of elements in

internal memory giving that St.

Page 17

Upper Bounds on Xt

Any of the orders of the new contents of internal memorý can be

constructed by first choosing B locations among the M possible ones (in

the sorted order of the elements in internal memory), and then choosing

a distribution into these locations of the B elements of the block read.

This is because the order of the M −B elements residing in internal

memory before the I/O is already known (their order was settled by the

adversay after the previous Read).

If the block read was previously written by the algorithm, the order of its

B elements has been settled earlier (as they were together in internal

memory), and there is only one possible distribution of them over the B

chosen order-locations. If the block is untouched, there are B! possible

distributions of them (since we have block-aligned I/Os, a block is either

completely untouched or completely touched).

Page 18

Upper Bounds on Xt

Type of I/O Read untouched block Read touched block Write

Xt

(

M
B

)

B!
(

M
B

)

1

Note: at most N/B I/0s on untouched blocks.

From |S0| = N ! and |St| ≥ |St−1|/Xt we get

|St| ≥
N !

(

M
B

)t
(B!)N/B

Sorting algorithm cannot stop before |St| = 1. Thus,

1 ≥ N !
(

M
B

)t
(B!)N/B

for any correct algorithm making t I/Os.

Page 19

Lower Bound Computation

1 ≥ N !
(

M
B

)t
(B!)N/B

t log

(

M

B

)

+ (N/B) log(B!) ≥ log(N !)

3tB log(M/B) +N logB ≥ N(logN − log e)

3t ≥ N(logN − log e− logB)

B log(M/B)

t = Ω(N/B logM/B(N/B))

Lemma was used:

a) log(x!) ≥ x(log x− log e)

b) log(x!) ≤ x log x

c) log
(

x

y

)

≤ 3y log(x/y) when x ≥ 2y

Page 20

Proof of Lemma

Lemma:

a) log(x!) ≥ x(log x− log e)

b) log(x!) ≤ x log x

c) log
(

x
y

)

≤ 3y log(x/y) when x ≥ 2y

Stirlings formula: x! =
√
2πx · (x/e)x · (1 +O(1/12x))

Proof (using Stirling):

a) log(x!) = log(
√
2πx) + x(log x− log e) + o(1)

b) log(x!) ≤ log(xx) = x log x

c) log
(

x
y

)

≤ log(xy

(y/e)y) = y(log(x/y) + log(e))

≤ 3y log(x/y) when x ≥ 2y

Page 21

The I/O-Complexity of Sorting

Defining

n = N/B

m = M/B

N/B logM/B(N/B) = sort(N)

we have proven

I/O cost of sorting:

Θ(N/B logM/B(N/B))

= Θ(n logm(n))

= Θ(sort(N))

Page 22

