Written Examination
DM?22 Programming Languages

Department of Mathematics and Computer Science
University of Southern Denmark

Monday, June 27, 2005, 09.00-13.00

The exam set consists of four pages (including this front page), and contains four
questions. The weight of each question is as follows:

Question 1: 25%
Question 2: 25%
Question 3: 30%
Question 4: 20%

The parts of a question do not necessarily have equal weight. Note that often a
part can be answered independently from the other parts.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.

Question 1 (25%)

SelectionSort is an O(n?) time sorting algorithm which works by repeatedly find-
ing and removing the smallest element in a list.

Part a: Define in Haskell a function selsort which implements SelectionSort.
O

Binary strings can be represented in Haskell by strings containing the characters
0 and 1. One natural ordering of binary strings is as follows: strings appear
by increasing lengths, and for each length, the strings appear in lexicographical
order. A list of the first ten strings in this ordering looks as follows in Haskell:

[llll , Il0|l S |l1ll s llOOll 5 |l01I| , "10" s |l11|l s IIOOOII s "001" S Ilolon]

Part b: Define in Haskell an infinite list binstrings containing all binary
strings in the above ordering. In particular, take 10 binstrings should be the
list above. a

Question 2 (25%)

In this question, we consider sequences of elements from a set of size three. For
concreteness, let the set be S = {1,2,3}, and the sequences be strings over S.
In such a string, two identical neighboring substrings (non-empty, of course) are
said to form a repetition. As an example, the following string contains the two
underlined repetitions:

311321231232

A string having no repetitions is said to be repetition-free. The task of this
question is to develop a Prolog predicate which generates all repetition-free strings
over S of a given length. Strings will be represented as lists of integers from S.

Part a: Implement a Prolog predicate frontRep(L) which is true iff there is
repetition starting at the front of the list L. [Hint: standard predicates (from
textbook or standard library) on lists may come in handy.] |

Part b: Implement a Prolog predicate repFree(X,N) which is true iff X is
a repetition-free list of elements in S and has length N. The predicate must be
able to generate (as instantiations of X) all repetition-free lists of length some
supplied N, by repeated use of ’ ;. O

Part c: Implement a Prolog predicate countLessThanEq(N,R) which is true
iff R is the number of repetition-free lists of elements in S of length less than or
equal to N. The number of repetition-free lists of length zero is defined as one. O

Question 3 (30%)

Part a: For the Prolog program below, state all results (i.e. all instantiations
of X and Y) which will be produced by repeated satisfaction of the goal t(X,Y)
(i.e. by repeated use of ’; 7).

t(X,Y):-s(X),!,v(Y),u(Y).
v(a).
v(b).
v(c).
u(b).
u(c).
s(1).
s(2).

Part b: Convert the following predicate logic expression to clausal form:
VXEY ((a(X,Y) Vb(Y)) = ¢X)))

Document the steps of your conversion. |

Part c: For each of the following pairs of Prolog predicates, find a most general
unifier (with occur-check), or argue that none exists. Explain each step of your
derivations.

i) £(Y,X,Y) and f(g(X),t,g(2))
ii) add(X,g(Y),g(g(2))) and add(g(g(¥)),g(T),T)
iii) length(X+Y,[Y|Z]) and length(X,[0,1,2])

(Recall that [0,1,2] is the same as [0][1,2]].) O

Part d: Consider the Haskell functions

map :: (a -> b) -> [a] -> [b]
zip :: [al > [b] -> [(a,b)]

For each of the following expressions, find its most general type. Explain each
step of your derivations.

i) map zip

ii) map . zip

Question 4 (20%)
In the textbook, the following two functions appear (pages 197 and 199):

reverse :: [a] —> [a]
reverse [] = []
reverse (z:zs) = reverse zs ++ [z]

filter :: (a -> Bool) -> [a] —> [a]
filter p [0 = [1
filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs
In part a and b below, we assume that p :: a -> Bool never returns the value
undefined.

Part a:
Prove that for all p and for all finite lists xs, the following holds:

reverse (filter p xs) = filter p (reverse xs)
You may without proof use that
filter p (xs ++ ys) = (filter p xs) ++ (filter p ys)

for all p and all lists xs and ys. m|

Part b: Extend the argumentation from the previous question to prove that
for all p, we have

reverse . filter p = filter p . reverse

|

Part c: Argue that the equations in a and b do not hold without the assumption
on p stated in the beginning. O

