
Written Examination

DM22 Programming Languages

Department of Mathematics and Computer Science

University of Southern Denmark

Monday, June 27, 2005, 09.00–13.00

The exam set consists of four pages (including this front page), and contains four
questions. The weight of each question is as follows:

Question 1: 25%
Question 2: 25%
Question 3: 30%
Question 4: 20%

The parts of a question do not necessarily have equal weight. Note that often a
part can be answered independently from the other parts.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.



Question 1 (25%)

SelectionSort is an O(n2) time sorting algorithm which works by repeatedly find-
ing and removing the smallest element in a list.

Part a: Define in Haskell a function selsort which implements SelectionSort.

2

Binary strings can be represented in Haskell by strings containing the characters
0 and 1. One natural ordering of binary strings is as follows: strings appear
by increasing lengths, and for each length, the strings appear in lexicographical
order. A list of the first ten strings in this ordering looks as follows in Haskell:

["","0","1","00","01","10","11","000","001","010"]

Part b: Define in Haskell an infinite list binstrings containing all binary
strings in the above ordering. In particular, take 10 binstrings should be the
list above. 2

Question 2 (25%)

In this question, we consider sequences of elements from a set of size three. For
concreteness, let the set be S = {1, 2, 3}, and the sequences be strings over S.
In such a string, two identical neighboring substrings (non-empty, of course) are
said to form a repetition. As an example, the following string contains the two
underlined repetitions:

311321231232

A string having no repetitions is said to be repetition-free. The task of this
question is to develop a Prolog predicate which generates all repetition-free strings
over S of a given length. Strings will be represented as lists of integers from S.

Part a: Implement a Prolog predicate frontRep(L) which is true iff there is
repetition starting at the front of the list L. [Hint: standard predicates (from
textbook or standard library) on lists may come in handy.] 2

Part b: Implement a Prolog predicate repFree(X,N) which is true iff X is
a repetition-free list of elements in S and has length N. The predicate must be
able to generate (as instantiations of X) all repetition-free lists of length some
supplied N, by repeated use of ’;’. 2

Part c: Implement a Prolog predicate countLessThanEq(N,R) which is true
iff R is the number of repetition-free lists of elements in S of length less than or
equal to N. The number of repetition-free lists of length zero is defined as one. 2



Question 3 (30%)

Part a: For the Prolog program below, state all results (i.e. all instantiations
of X and Y) which will be produced by repeated satisfaction of the goal t(X,Y)
(i.e. by repeated use of ’;’).

t(X,Y):-s(X),!,v(Y),u(Y).

v(a).

v(b).

v(c).

u(b).

u(c).

s(1).

s(2).
2

Part b: Convert the following predicate logic expression to clausal form:

∀X(∃Y ((a(X, Y ) ∨ b(Y )) ⇒ c(X)))

Document the steps of your conversion. 2

Part c: For each of the following pairs of Prolog predicates, find a most general
unifier (with occur-check), or argue that none exists. Explain each step of your
derivations.

i) f(Y,X,Y) and f(g(X),t,g(Z))

ii) add(X,g(Y),g(g(Z))) and add(g(g(Y)),g(T),T)

iii) length(X+Y,[Y|Z]) and length(X,[0,1,2])

(Recall that [0,1,2] is the same as [0|[1,2]].) 2

Part d: Consider the Haskell functions

map :: (a -> b) -> [a] -> [b]

zip :: [a] -> [b] -> [(a,b)]

For each of the following expressions, find its most general type. Explain each
step of your derivations.

i) map zip

ii) map . zip

2



Question 4 (20%)

In the textbook, the following two functions appear (pages 197 and 199):

reverse :: [a] -> [a]

reverse [] = []

reverse (z:zs) = reverse zs ++ [z]

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

In part a and b below, we assume that p :: a -> Bool never returns the value
undefined.

Part a:

Prove that for all p and for all finite lists xs, the following holds:

reverse (filter p xs) = filter p (reverse xs)

You may without proof use that

filter p (xs ++ ys) = (filter p xs) ++ (filter p ys)

for all p and all lists xs and ys. 2

Part b: Extend the argumentation from the previous question to prove that
for all p, we have

reverse . filter p = filter p . reverse

2

Part c: Argue that the equations in a and b do not hold without the assumption
on p stated in the beginning. 2


