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The exam set consists of six pages (including this front page), and contains four
questions. The weight of each question is as follows:

Question 1: 25%
Question 2: 20%
Question 3: 25%
Question 4: 30%

The parts of a question do not necessarily have equal weight. Note that often a
part can be answered independently from the other parts.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.



Question 1 (25%)

Part a: Make in Haskell a definition of a function

cuts :: [a] -> [([a],[a])]

such that cuts list is a list of tuples giving all the ways to divide list into two
consecutive parts. As an example, cuts [1,2,3] should have the value

[([],[1,2,3]),([1],[2,3]),([1,2],[3]),([1,2,3],[])].

(or contain the same elements in some other ordering). 2

Part b: Make in Haskell a definition of a function

shifts :: [a] -> [[a]]

such that shifts list is a list of all cyclic shifts of list. As an example,
shifts [1,2,3,4] should have the value

[[1,2,3,4],[2,3,4,1],[3,4,1,2],[4,1,2,3]]

(or contain the same elements in some other ordering). 2

Part c: Make in Haskell a definition of a function

permutations :: [a] -> [[a]]

such that permutations list is a list of all the permutations of list. As an
example, permutations [1,2,3] should have the value

[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

(or contain the same elements in some other ordering). 2



Question 2 (20%)

In Prolog, trees can be represented by structures. For instance, binary trees with
elements at the leaves could be represented by structures with functor node and
two components (left and right subtree) for internal nodes, and structures with
functor leaf and one component (the element) for leaves.

In such a scheme, the tree

a

b c

d

would be represented by

node(leaf(a),node(node(leaf(b),leaf(c)),leaf(d)))

Part a: Implement a Prolog predicate height(Tree,N) which, for Tree instan-
tiated to a structure representing a tree according to the scheme above, is true
iff N the height of the root. As usual, the height of a leaf is zero, and the height
of an internal node is one larger than the largest height of its children. For the
tree above, N should be 3. 2

Part b: Implement a Prolog predicate flatten(Tree,List) which, for Tree

instantiated to a structure representing a tree according to the scheme above, is
true iff List is the list of elements in the leaves of the tree, in left-to-right order.
For the tree above, List should be [a,b,c,d]. 2

Part c: Implement a Prolog predicate sameshape(Tree1,Tree2) which, for
Tree1 and Tree2 instantiated to structures according to the scheme above, is
true iff Tree1 has the same tree structure as Tree2, but possibly different ele-
ments in the leaves.

As an example, if Tree1 is instantiated to the structure representing the tree
above, sameshape(Tree1,Tree2) should be true for Tree2 instantiated to

node(leaf(1),node(node(leaf(x),leaf(2)),leaf(y)))

and false for Tree2 instantiated to

node(node(node(leaf(a),leaf(b)),leaf(c)),leaf(d))

2



Question 3 (25%)

Part a: For the Prolog program below, state all results (i.e. all instantiations
of X and Y) which will be produced by repeated satisfaction of the goal f(X,b,Y)
(i.e. by repeated use of ’;’).

f(Z,b,Z) :- g(Z).

f(1,Z,1) :- g(Z).

g(a) :- !.

g(b).

g(c).

2

Part b: Convert the following predicate logic expression to clausal form:

∀X(¬(∀Y (∃Z((p(Y ) ⇒ q(Z)) ∧ r(X)))))

Document the steps of your conversion. 2

Part c: For each of the following pairs of Prolog predicates, find a most general
unifier (with occurs-check), or argue that none exists. Explain each step of your
derivations.

i) q(q(X,Y),q(alice,bob)) and q(Z,Z)

ii) alice(X,bob(X),X) and alice(bob(Y),Y,bob(Y))

iii) 2=3 and X=Y

iv) length([1,2,3]) and 3

v) append([1,2],[3,4],Z) and append(X,[3,4],[2,3])

2



Question 4 (30%)

Part a: Consider the following Haskell definition:

f [] y = y

f (x:xs) y = x:f y xs

Find the most general type of f. Explain each step of your derivation. 2

Part b: Give the value of f [1,2,3] [51,52,53,54], and explain the func-
tionality of f. 2

Part c: Answer the following:

i) Is f strict in its first argument?

ii) Is f strict in its second argument?

In each case, give arguments for your answer. 2

Part d: Consider the following statement S:

length l1 + length l2 = length (f l1 l2)

where length is defined by

length:: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

i) Show that statement S is true for l1 = [].

ii) Show that statement S is true for l1 = (x:xs) and l2 = [].

iii) Show that statement S is true for l1 = (x:xs) and l2 = (y:ys), given
that it is true for l1 = xs and l2 = ys.

Note that it follows [through an inductive proof with i) and ii) as base cases and
iii) as the inductive step] that statement S is true for all finite lists l1 and l2.
No proof of this implication needs to be given. 2



Part e: Make in Haskell a definition of a function g which for lists of equal length
is an inverse to f. More precisely, it should be true that (xs,ys) = g (f xs ys)

for finite lists xs and ys of equal length.

Only code needs to be given (no proof of the identity is required). 2

Part f: The function f can also be defined using folding. Below is a possible
code for such a variant f1:

f1 xs ys = (reverse mix) ++ yrest

where

(mix,yrest) = foldl h e xs

e = ([],ys)

However, the binary function h used in the folding is not defined above. It has
the following type:

h :: ([a],[a]) -> a -> ([a],[a])

Make in Haskell a definition of h such that f xs ys and f1 xs ys are the same
for all finite lists xs and ys.

Only code needs to be given (no proof of the identity is required). 2


