
Haskell Operators and other Lexical Notation

-- Start of comment line
{- Start of short comment
-} End of short comment
+ Add operator
- Subtract/negate operator
* Multiply operator
/ Division operator

Substitution operator, as in e{f/x}
^, ^^, ** Raise-to-the-power operators

&& And operator
|| Or operator
< Less-than operator
<= Less-than-or-equal operator
== Equal operator
/= Not-equal operator
>= Greater-than-or-equal operator
> Greater-than operator
\ Lambda operator
. Function composition operator

Name qualifier
| Guard and case specifier

Separator in list comprehension
Alternative in data definition (enum type)

++ List concatenation operator
: Append-head operator (“cons”)
!! Indexing operator
.. Range-specifier for lists
\\ List-difference operator
<- List comprehension generator

Single assignment operator in do-constr.
; Definition separator
-> Function type-mapping operator.

Lambda definition operator
Separator in case construction

= Type- or value-naming operator
:: Type specification operator, “has type”
=> Context inheritance from class
() Empty value in IO () type
>> Monad sequencing operator
>>= Monad sequencing operator with value passing
>@> Object composition operator (monads)
(..) Constructor for export operator (postfix)

[and] List constructors, “,” as separator
(and) Tuple constructors, “,” as separator

Infix-to-prefix constructors
‘ and ‘ Prefix-to-infix constructors
’ and ’ Literal char constructors
" and " String constructors

_ Wildcard in pattern
~ Irrefutable pattern
! Force evaluation (strictness flag)
@ “Read As” in pattern matching

