
Institut for Matematik og Datalogi 4. december 2018
Syddansk Universitet, Odense JFB/RF

Eksaminatorier DM534 Uge 49

[I denne uge er opgave 1 og 4 de mest eksamensrelevante.]

1. Why is a cryptographically secure hash function used in connection
with RSA digital signatures?

2. With RSA, why would you never use the value 2 as one of of the two
primes p and q?

3. In RSA, why must the message being encrypted be a non-negative
integer strictly less than the modulus?

4. Consider an RSA system with Alice’s public key N = 1517 and e = 17.
Note that 1517 = 37 · 41.

(a) Find Alice’s secret key d. Use the Extended Euclidean Algorithm
from slides 51–52 of the RSA slides used in lectures (there, e and
d are called a and s (and d also x at one point)).

(b) Try encrypting 423. Use the algorithm for fast modular expo-
nentiation (page 33 on the slides). How many times during the
recursive execution is the “if k is odd” case encountered, and
how many times is the “if k is even” case encountered? [Do not
include the base cases k = 0 and k = 1 in the counts.]

(c) Decrypt the number obtained above, using fast modular expo-
nentiation. Is the result correct? How many times during the
recursive execution is the “if k is odd” case encountered, and
how many times is the “if k is even” case encountered? [Do not
include the base cases k = 0 and k = 1 in the counts.]

5. Why in RSA is it necessary that gcd(eA, (pA − 1)(qA − 1)) = 1? Find
an example (that is, values eA, pA and qA) where this greatest common
divisor is not equal to 1.



6. Try executing the Miller-Rabin primality test on 11, 15, and 561. First,
what type of numbers are they (note: 561 is known from the slides)?
For each, run the Miller-Rabin test for at least one value a of your own
choice, preferably for more. Use e.g. Maple or a simple Java program
importing the class BigInteger from the Java library for executing
the exponentiations (simply raising to a power and then using modu-
lus should work in reasonable time for numbers this size, hence there
is no need to use the fast modular exponentiation algorithm in this ex-
ercise). Which calculations showed that the composite numbers were
not prime—the first line (the Fermat test) or later lines?

With 561, be sure to try an a relatively prime to 561 (most are, 2 is
a simple example). What happens differently if you try a = 3? Can
you explain the latter?

7. Find four different square roots of 1 modulo 143, i.e., numbers which
multiplied by themselves modulo 143 give 1 (and which are at least 0
and less than 143). You may consider writing a simple program for
finding them.

8. [Optional] Add two of these different square roots which are not nega-
tives of each other modulo 143 (two where adding them together does
not give 143). Find the greatest common divisor of this result and 143.
Subtract these same two different square roots and find the greatest
common divisor of this result and 143. Think about why you get these
results. (These effects are the starting point for the math behind fast
primality testing algorithms.)

9. If you have time, for fun try breaking these two encrypted messages:

• This was entitled ”Cold Country”. It was encrypted using a
monoalphabetic substitution cipher. A monoalphabetic substitu-
tion cipher works similarly to a Caesar cipher. However, instead
of just shifting the alphabet a fixed amount to get the mapping
defined for each letter, the key is a permutation of the alphabet,
so that you decide according to this key what letter “A” maps
to, what letter “B” maps to, etc. If the alphabet has 29 letters,
the number of keys is now 29! Why? The original message here
was in English, so there are only 26 letters. How many possible
keys are there?

TOWWJPHJC ZY RXW PHOTWYR ZYPHJC ZJ RXW

2



SFOPC. UFYR FB ZR ZY QFIWOWC SZRX ZQW
RXFMYHJCY FB BWWR CWWD.

Discuss which techniques you used.

• This English message was encrypted using a Caesar cipher. De-
crypt it.

YMNX HWDUYTLWFR NX JFXD YT IJHNUMJW.

Discuss which techniques you used.

3


