
3D Graphics Basics



Overall Idea

1. Define (using math) a scene of virtual objects in a 3D coordinate
system.

2. Generate a 2D picture which simulates a picture taking of the scene
from some camera position in the coordinate system. That is,
calculate relevant 2D data from the 3D data of step 1. This step is
often called rendering the scene.

Note that both steps are mathematical. Thus, 3D graphics is
mathematical at its core.

In principle, we can do 3D graphics without a computer. However, for
efficiency reasons, we normally involve a computer to help us do the
calculations.

In this course, we will study the principles (the math and the algorithms)
of the most widespread way of performing the two steps above. The
exam will be focusing on this part.

We will also get some hands-on experience on how to program and
execute these principles with current technology.
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Step 1: Defining 3D Objects

In real life, we mostly meet opaque objects, for which we only see their
surfaces ⇒ we focus on defining surfaces in 3D.

A very simple way to define a surface in 3D is via three 3D points. They
define a plane and a triangle in that plane.

In our story, triangles will be a fundamental element. From these, we can
build larger surfaces:



More Examples



3D Models
3D model = list of 3D points and info on how they group into triangles.

x1 = (10, 10, 10)
x2 = (10, 20, 30)

...
T1 = (x1, x2, x3)
T2 = (x1, x2, x4)

...

Besides 3D position, more information such as color values, normal
vectors, and texture coordinates, may be included in vertices for use
during rendering.

The generation of 3D models is an artistic endeavour (using software
tools such as Blender, Maya, etc.) and is outside of computer science.

In our course, we assume 3D models are provided by others (or we use
simple, geometric ones like boxes).
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Step 2: Generate a 2D Picture

The goal is to “paint the view” of the scene from the given camera
position.

A picture is a 2D array of pixels. We need to find a color for each pixel.

Plan:

I Identify the picture/screen with a part of a plane in the scene.

I Calculate a color value of a pixel based on scene contents along its
ray—often just on the closest object in the scene along the ray
(modeling an opaque object and clear air).



Step 2: Generate a 2D Picture

The most direct execution of this idea is ray-driven:

For each pixel/ray in picture: calculate a color for that pixel.

Another way is triangle-driven:

For each triangle in the scene: find the pixels it covers on the screen
(rasterization) and calculate a color for each of those.

Both versions need a way to determine the closest object along each ray.

For efficiency reasons, the triangle-driven method is the most widespread,
in particular for real-time applications (it can be implemented by simple
and easy parallelizable computations). OpenGL (and this course) is based
on this method.
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The Graphics Pipeline

I Compose the scene from the provided models. This requires scaling,
rotation, and translation of the models.

I Define a camera position.

I Project the points of the models of the scene onto a 2D plane (given
by the camera position). The plane is identified with the screen.

I For each triangle perform rasterization: find the pixels it covers in
the screen. Interpolate any extra data (color, etc.) in the three
vertices to find data values for the pixels.

I For each of these pixels: calculate a color (shading).

I Apply the color to the pixel on screen in a suitable way (e.g. if other
triangles are closer, discard the color (using a z-buffer)).

Important to note: Triangles are simply (triples of) vertices until the
rasterization phase. In other words:

Until rasterization, our data are essentially points.

We will see the details of all the terms in italics (and many more) later.
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Example of Interpolation

During rasterization,

for instance color values included with the three vertices may be
interpolated for pixels across the triangle:

The same holds for other data coming with the vertices, such as normal
vectors and texture coordinates. More details of interpolation later.



Hidden Surface Removal with the z-buffer

Colorbuffer = screen-size 2D buffer of color values
z-buffer = screen-size 2D buffer of depth values

f = fragment

(i,j) = screen position of f

z = depth in scene of f

IF z < zbuffer[i,j]:

colorbuffer[i,j] = f.color

zbuffer[i,j] = z

03/08/2018 hidden surface elimination using z buffer algorithm
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03/08/2018 hidden surface elimination using z buffer algorithm

https://www.slideshare.net/rajivagarwal23dei/computer-graphics-28843839 10/13

03/08/2018 hidden surface elimination using z buffer algorithm

https://www.slideshare.net/rajivagarwal23dei/computer-graphics-28843839 11/13



Hidden Surface Removal with the z-buffer

Colorbuffer = screen-size 2D buffer of color values
z-buffer = screen-size 2D buffer of depth values

f = fragment

(i,j) = screen position of f

z = depth in scene of f

IF z < zbuffer[i,j]:

colorbuffer[i,j] = f.color

zbuffer[i,j] = z

03/08/2018 hidden surface elimination using z buffer algorithm

https://www.slideshare.net/rajivagarwal23dei/computer-graphics-28843839 8/13

03/08/2018 hidden surface elimination using z buffer algorithm

https://www.slideshare.net/rajivagarwal23dei/computer-graphics-28843839 10/13

03/08/2018 hidden surface elimination using z buffer algorithm

https://www.slideshare.net/rajivagarwal23dei/computer-graphics-28843839 11/13



Some History

1960-70-80s Many of the fundamental math ideas and algorithms of
3D graphics are developed. Executed on the CPU.

1990s GPUs with hardware support for (some of) the 3D
algorithms. Provides speed via parallelization.

2000s GPUs become programmable (as opposed to supporting a
fixed set of algorithms), are still built to support mainly
3D operations.

2010s GPUs support more general-purpose calculations (not
relevant for this course).

APIs are needed for programming the hardware. Examples include
OpenGL, DirectX, Vulkan, Metal.

In contrast to many other areas of programming, APIs of 3D graphics are
moving towards less abstraction (to exploit current CPUs the fullest).

In this course, we use the widespread, cross-platform API OpenGL
(1992-), accessed in Java via the wrapper API JOGL.


