
Intro to OpenGL and JOGL



Some OpenGL Pipeline Terminology

Primitive The geometric objects that can be rendered:

I Point
I Line (segment)
I Triangle

They are specified by one, two, or three 3D vertices,
respectively.

Fragment The data generated for a single pixel from a primitive.

Frame buffer A set of screen-size 2D buffers, including the color
buffer(s) and z-buffer.



OpenGL Basic Structure

OpenGL is state based (∼ a set switches). Methods of the API can:

I Change the OpenGL state

I Query some part of that state

I Cause OpenGL to use its current state to render something

An object holding the entire current state and current framebuffer is
called an OpenGL context.

Other OpenGL objects are designed to manage/store parts of the state.
Binding them to a context 1) will copy their stored state values to the
context 2) further state changes to the context (of types relevant for the
object) will be copied and stored in their stare values.

OpenGL objects will on creation be given an integer ID (sometimes called
their name). Their role is similar to references in Java.



OpenGL Basic Structure

OpenGL is state based (∼ a set switches). Methods of the API can:

I Change the OpenGL state

I Query some part of that state

I Cause OpenGL to use its current state to render something

An object holding the entire current state and current framebuffer is
called an OpenGL context.

Other OpenGL objects are designed to manage/store parts of the state.
Binding them to a context 1) will copy their stored state values to the
context 2) further state changes to the context (of types relevant for the
object) will be copied and stored in their stare values.

OpenGL objects will on creation be given an integer ID (sometimes called
their name). Their role is similar to references in Java.



OpenGL Basic Structure

OpenGL is state based (∼ a set switches). Methods of the API can:

I Change the OpenGL state

I Query some part of that state

I Cause OpenGL to use its current state to render something

An object holding the entire current state and current framebuffer is
called an OpenGL context.

Other OpenGL objects are designed to manage/store parts of the state.
Binding them to a context 1) will copy their stored state values to the
context 2) further state changes to the context (of types relevant for the
object) will be copied and stored in their stare values.

OpenGL objects will on creation be given an integer ID (sometimes called
their name). Their role is similar to references in Java.



OpenGL Basic Structure

OpenGL is written in C (and should be accessible from many different
programming languages), hence no overloading of methods (functions).
Instead a naming scheme separates like methods with different
parameters.

I glProgramUniform3f(...): passes three floats

I glProgramUniform2iv(...): passes a vector (array) of pairs of
ints.



Shaders

A shader is a small program executing part of the pipeline. Compiled and
sent to the GPU by the Java program (at runtime) via OpenGL.

For OpenGL, the programming language of shaders is called GLSL. It is
simple and C-like.



Shaders
Communication needed:

Java program → shader → shader → color buffer/screen

I Vertex attribute variable: interpolated for each primitive during
rasterization (vertices → fragments).

I Uniforms variable: same value for all fragments from all primitives
during the rendering with this program.

In/out variables in shaders. Identification of equally named variables in
different shaders.

Some vertex attributes variables are predefined.



JOGL

JOGL

I Is a Java wrapper API over OpenGL API (OpenGL is written in C).

I Also provides integration with Java GUI API (AWT, Swing), as GUI
interaction is not part of OpenGL.

You will need to use both the JOGL and OpenGL documentation.

Often, arguments in OpenGL functions of pointer/array type (type *)
are often changed to a Buffer type in JOGL.



Some JOGL

Drawing is performed via the callback methods of the interface
GLEventListener:

I init Called once when OpenGL is first started up. Place set-up
code and most loading of model data here.

I display Called when OpenGL rendering should take place (each
frame, for instance). Place your main drawing code here.

I reshape Called once after the window has been resized. Reset some
of your data, if needed.

I dispose Called when OpenGL shuts down. Allows you to release
OpenGL ressources, if relevant.

The class FPSAnimator makes display be called at regular intervals
(generating the frames of an animation or game).


