Web Crawling

e Najork and Heydon, High-Performance Web Crawling, Compaq SRC Research
Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

e Najork and Wiener, Breadth-first search crawling yields high-quality pages.
Proc. 10th Int. WWW Conf., 2001.

Web Crawling

Web Crawling = Graph Traversal

S = {startpage}
repeat
remove an element s from S
foreach (s,v)
If v not crawled before
Insertv in S

|Ssues

Theoretical:
Startset S

Choice of s (crawl strategy)
Refreshing of changing pages.

Practical:

Load balancing (own resources and resources of crawled
sites)

Size of data (compact representations)
Performance (1/Os).

Crawl Strategy

e Breath First Search
e Depth First Search
e Random

e Priority Search

Possible priorities:

e Often changing pages (how to estimate change rate?).
e Using global ranking scheme for queries (e.g. PageRank).

e Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).

BFS is Good

8 25
B

]

L6 s 7
8 =
% g 15-
£ a 8]
& =z]
» g 10-
> > i
<] i
2 .
s]

<>: i

0 4

0 5 10 15 20 25 30 35 40 45 50 55 1 10 100 1000 10000 100000 1et+06 1et+07 1et+08
Day of crawl top N
Figure 1: Average PageRank score by day of crawl Figure 2: Average day on which the top N pages

were crawled

[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.

PageRank Priority Is Even Better

(but computationally expensive to use...)

Hot pages crawled
100%

80%

60% —+ PageRank
—— backlink
—4— breadth

40% ///// — random

20% W

0% T T . . Pages crawled
0% 20% 40% 60% 80% 100%

Figure 2: The performance of various ordering metrics for IB(P); G = 100

[From: Arasu et al., Searching the Web. ACM Trans. Internet Technology, 1, 2001]

Statistics for crawl of 225.000 pages at Stanford.

Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Resources of others:

e BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

e |dentify yourself in request. Give contact info (you may use
ww.robotstxt.org)

e Monitor the crawl.
e Obey the Robots Exclusion Protocol.

Efficiency

e RAM: never enough for serious crawls. Efficient use of disk
based storage important. 1/O when accessing data
structures is often a bottleneck.

e CPU cycles: not a problem (Java and scripting languages
are fine).

e DNS lookup can be a bottleneck (as normally
synchronized). Asynchronous DNS: check GNU adns
library.

Rates reported for serious crawlers: 200-400 pages/sec.

Crawler Example: Mercator

Mercator

—mzZ2aom4d2zZ—

DNS

Resolver
>
Content
e Seen?

(2 . © O v O [|9 o

| HTTP RIS Extractor > Filter —» DUE |—» URL Frontier
% p—
<
i Tag L Ne—
-l FTP > > T S
| Counter Log Queue
| — Files
<
/ GIF - N— 1
- Gopher |] Stats - Log
N—
Protocol Processing
Modules Modules

Figure 1. Mercator’s main components.

[From: Najork and Heydon, 2001]

Mercator

Further features:
e Uses fingerprinting ((sparse) hashfunction on strings) for
URL IDs - ex. md5 or sha.

e Continuous crawling—crawled pages put back in queue
(prioritized using update history).

e Checkpointing (crash recovery).
e \Very modular structure.

10

Detalls: Politeness

Polite, Dynamic, Prioritizing Frontier

Y

Prioritizer

Front-end
, FIFO queues
(one per
priority level)

Random queue
chooser with bias to

high—priority queues Host-to-
queue table
i A->3
Back-end queue | __ __ E : %
router . o
. Priority queue
X>2 (e.g., heap)

Back-end
FIFO queues
(many more than
worker threads)

Back-end queue t--~ .-
selector lg--=-=-=--=-=-=-~-

Figure 3: Our best URL frontier implementation

[From: Najork and
Heydon, 2001]

Detalls: Efficient URL Elimination

Disk file containing URLs
(one per front-buffer entry)

Front-buffer containing T
FP cache‘ FPs and URL indices NN
216 entries 2721 entries
- - - 025ef 978 035f4ca8| 1 »| http://u. gov/gw
o Flngerprlntlng 0382f c97 077 6de43| 2 | http://a. cont xa
05117c6f 15ef 7885| 3 »|http://z.org/gu
e 234e7676| 4 »{http://q.net/hi
= 27cc67ed| 5 » http://medu/tz
o Sorted flle Of 2466710 6 >|{http://n.mil/gd
327849c8| 7 »| http://fq.delpl
= = 40678544 | 8 »| http://pa.fr/ok
fmgerprmts of seen T2ca6 T7] | http: 1710, tw ch

URLSs. r T

FP disk file Disk file containing URLs
100m to 1b entries (one per back-buffer entry)
e Cache most used oot g
P A
— FPs and URL indices S
2721 entries

http://g.comyt
http://z.gov/ew

U R L 025f e427 02f567e0| 1 »|http://x.com hr
S . 8‘;;;2%% O4decall| 2 »| http://g.org/rf
o 12054693 | 3 » http://p.net/gt
17fc8692| 4 »{http://w com ni
230cd562| 5 »| http://gr.bel zf
o Non-caChed URLS 30ac8d98| 6 http://gg. kw kz
357cae05| 7 http://it.il/mm
8
9

' YV

checked In batches el :
(merge with file 1/0). e r —

Figure 4: Our most efficient disk-based DUE implementation

A

[From: Najork and Heydon, 2001]

Detalls: Parallelization

s)
f\/

Link— URL Host DUE URL HTTP
xtractor Filter Splitter Frontier module

HTTP Link—
module extractor
URL URL

Frontier Filter
Host
DUE Splitter
Host
Splitter DUE
URL URL
Filter Frontier

Link HTTP
extract modul
HTTP URL DUE Host URL Link—
module Frontier Splitt Fil
k @ J

Figure 2: A four-node distributed crawling hive

[From: Najork and Heydon, 2001]

Some Experiences

[] 200 - OK (81.36%)

[404 - Not Found (5.94%)

O 302 - Moved temporarily (3.04%)
B Excluded by robots.txt (3.92%)
B TCP error (3.12%)

Il DNS error (1.02%)

H Other (1.59%)

[] text/html (65.34%)

[] image/gif (15.77%)

[image/jpeg (14.36%)
[l text/plain (1.24%)

l application/pdf (1.04%)
H Other (2.26%)

Figure 6: Outcome of download attempts Figure 7: Distribution of content types

15%

10%

5%

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Figure 8: Distribution of document sizes

14

Some Experiences

64G
166 [
4G F
1G F
256M |-
64M F
16M [
4am F
M L
256K F
64K F
16K [
aK F
1K F
256 F
64 [
16 F
NS
.)
1 10 100 1000 10000 100000 1000000 10000000 1 10 100 1000 10000 100000 1000000 10000000

(a) Distribution of pages over web servers (b) Distribution of bytes over web servers

Figure 9: Document and web server size distributions

[.com (47.20%) [.com (51.44%)
[.de (7.93%) [.net (6.74%)
[.net (7.88%) [.org (6.31%)
[.org (4.63%) [.edu (5.56%)
O .uk (3.29%) O .jp (4.09%)

[raw IP addresses (3.25%) [.de (3.37%)

I .jp (1.80%) H .uk (2.45%)

[.edu (1.53%) [raw IP addresses (1.43%)
W .ru (1.35%) W .ca (1.36%)

Il .br (1.31%) [l .gov (1.19%)
W kr (1.30%) W .us (1.14%)

Hl .nl (1.05%) [l .cn (1.08%)

W pl (1.02%) M .au (1.08%)

H .au (0.95%) M .ru (1.00%)

B Other (15.52%) B Other (11.76%)

(a) Distribution of hosts over (b) Distribution of pages over

[From: Najork and Heydon, 2001]

15

Robot Exclusion Protocol

Simple protocol suggested by Martijn Koster in 1993. De facto
standard for robot exclusion. Full details at ww.robotstxt.org .

e Single file named robots.txt Iin root of server.
e Contains simple directions for exclusion of parts of site.

Example:

User-agent: x*

Disallow: /c8i-bin/
Disallow: /tmp/

Disallow: /joe/

User-agent: BadBot
Disallow: /

16

Robot Exclusion in HTML

Per page exclusion through the META tag in HTML.

Example:
<META NAME="ROBOTS" CONTENT="NOINRE NOFOLLOW'">

Further detalls at ww.w3.org/TR/html4/ (the HTML 4.01
specification) and at www.robotstxt/org

17

HTTP Protocol

One request message, one response message (over a single

TCP connection).

Format of messages:

Request line
Header 1line

Header 1line

(Body)

Response line
Header line

Header line

Body

Request

Response

18

HTTP Example

GET /somedir/page.html HTTP/1.1 HTTP/1.1 200 OK

Host: Www.somefirm.com Content-Type: text/html
ccept: text/* Content-Length: 345
ser-Agent: Mozilla 7.0 [en]

<HTML>

<HEAD>

Request Response

19

URLS

Absolute:

http://ww.somefirm.dk:80/main/test
http://www.somefirm.dk/main/test#thirdEntry
http://ww.somefirm.dk/c81l-bin?item=123

Relative:
./dir/test.html

Relative to

e URL of doc containing URL
e URL specified in <BASE> HTML tag.

Encoded characters:

ww.sdu.dk/"rolf — ww.sdu.dk/)7Erolf

20

Normalizing URLs

e Add portnumber if not present (:80).
e Convert escaped chars to real chars.
e Remove .. .#target from URL.

21

Further Resources

Further resources for implementing a crawler:

Another good paper with practical info:

Shkapenyuk and Suel: Design and Implementation of a
High-Performance Distributed Web Crawler. IEEE Int. Conf. on Data
Engineering (ICDE), February 2002.
(http://cis.poly.edu/suel/papers/crawl.ps)

HTML specification (www.w3.org)

A free book on programming web agents.
(http://www.oreilly.com/openbook/webclient)

Software libraries (Java, Perl, Python, C++) for net
programming.

List of MIME-types at IANA IDs - ex.
(ftp://ftp.isi.edu/in-notes/iana/assignments/
media-types/

22

	Web Crawling
	Issues
	Crawl Strategy
	BFS is Good
	PageRank Priority is Even Better
	Load Balancing
	Efficiency
	Crawler Example: Mercator
	Mercator
	Details: Politeness
	Details: Efficient URL Elimination
	Details: Parallelization
	Some Experiences
	Some Experiences
	Robot Exclusion Protocol
	Robot Exclusion in HTML
	HTTP Protocol
	HTTP Example
	URLs
	Normalizing URLs
	Further Resources

