Web Crawling

e Najork and Heydon, High-Performance Web Crawling, Compaq SRC Research
Report 173, 2001. Also in Handbook of Massive Data Sets, Kluwer, 2001.

e Najork and Wiener, Breadth-first search crawling yields high-quality pages.
Proc. 10th Int. WWW Conf., 2001.



Web Crawling

Web Crawling = Graph Traversal

S = {startpage}
repeat
remove an element s from S
foreach (s,v)
If v not crawled before
Insertv in S




|Ssues

Theoretical:
Startset S

Choice of s (crawl strategy)
Refreshing of changing pages.

Practical:

Load balancing (own resources and resources of crawled
sites)

Size of data (compact representations)
Performance (1/Os).



Crawl Strategy

e Breath First Search
e Depth First Search
e Random

e Priority Search

Possible priorities:

e Often changing pages (how to estimate change rate?).
e Using global ranking scheme for queries (e.g. PageRank).

e Using query dependent ranking scheme for queries
(“focused crawling”, “collection building”).



BFS is Good
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[From: Najork and Wiener, 2001]

Statistics for crawl of 328 million pages.



PageRank Priority Is Even Better

(but computationally expensive to use...)
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Figure 2: The performance of various ordering metrics for IB(P); G = 100

[From: Arasu et al., Searching the Web. ACM Trans. Internet Technology, 1, 2001]

Statistics for crawl of 225.000 pages at Stanford.



Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)



Load Balancing

Own resources:
e Bandwidth (control global rate of requests)
e Storage (compact representations, compression)

e Industrial-strength crawlers must be distributed (e.qg.
partition the url-space)

Resources of others:

e BANDWIDTH. Control local rate of requests (e.g. 30 sec.
between request to same site).

e |dentify yourself in request. Give contact info (you may use
ww.robotstxt.org )

e Monitor the crawl.
e Obey the Robots Exclusion Protocol.



Efficiency

e RAM: never enough for serious crawls. Efficient use of disk
based storage important. 1/O when accessing data
structures is often a bottleneck.

e CPU cycles: not a problem (Java and scripting languages
are fine).

e DNS lookup can be a bottleneck (as normally
synchronized). Asynchronous DNS: check GNU adns
library.

Rates reported for serious crawlers: 200-400 pages/sec.



Crawler Example: Mercator
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Figure 1. Mercator’s main components.

[From: Najork and Heydon, 2001]




Mercator

Further features:
e Uses fingerprinting ((sparse) hashfunction on strings) for
URL IDs - ex. md5 or sha.

e Continuous crawling—crawled pages put back in queue
(prioritized using update history).

e Checkpointing (crash recovery).
e \Very modular structure.
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Detalls: Politeness
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[From: Najork and
Heydon, 2001]



Detalls: Efficient URL Elimination

Disk file containing URLs
(one per front-buffer entry)
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Detalls: Parallelization
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Figure 2: A four-node distributed crawling hive

[From: Najork and Heydon, 2001]




Some Experiences

[] 200 - OK (81.36%)

[ 404 - Not Found (5.94%)

O 302 - Moved temporarily (3.04%)
B Excluded by robots.txt (3.92%)
B TCP error (3.12%)

Il DNS error (1.02%)

H Other (1.59%)

[] text/html (65.34%)

[] image/gif (15.77%)

[ image/jpeg (14.36%)
[l text/plain (1.24%)

l application/pdf (1.04%)
H Other (2.26%)

Figure 6: Outcome of download attempts Figure 7: Distribution of content types
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Some Experiences
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Figure 9: Document and web server size distributions
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[From: Najork and Heydon, 2001]
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Robot Exclusion Protocol

Simple protocol suggested by Martijn Koster in 1993. De facto
standard for robot exclusion. Full details at ww.robotstxt.org .

e Single file named robots.txt Iin root of server.
e Contains simple directions for exclusion of parts of site.

Example:

User-agent: x*

Disallow: /c8i-bin/
Disallow: /tmp/

Disallow: /joe/

User-agent: BadBot
Disallow: /

16



Robot Exclusion in HTML

Per page exclusion through the META tag in HTML.

Example:
<META NAME="ROBOTS" CONTENT="NOINRE NOFOLLOW'">

Further detalls at ww.w3.org/TR/html4/ (the HTML 4.01
specification) and at www.robotstxt/org
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HTTP Protocol

One request message, one response message (over a single

TCP connection).

Format of messages:

Request line
Header 1line

Header 1line

(Body)

Response line
Header line

Header line

Body

Request

Response

18



HTTP Example

GET /somedir/page.html HTTP/1.1 HTTP/1.1 200 OK

Host: Www.somefirm.com Content-Type: text/html
ccept: text/* Content-Length: 345
ser-Agent: Mozilla 7.0 [en]

<HTML>

<HEAD>

Request Response

19



URLS

Absolute:

http://ww.somefirm.dk:80/main/test
http://www.somefirm.dk/main/test#thirdEntry
http://ww.somefirm.dk/c81l-bin?item=123

Relative:
./dir/test.html

Relative to

e URL of doc containing URL
e URL specified in <BASE> HTML tag.

Encoded characters:

ww.sdu.dk/"rolf — ww.sdu.dk/)7Erolf
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Normalizing URLs

e Add portnumber if not present (:80).
e Convert escaped chars to real chars.
e Remove .. .#target from URL.
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Further Resources

Further resources for implementing a crawler:

Another good paper with practical info:

Shkapenyuk and Suel: Design and Implementation of a
High-Performance Distributed Web Crawler. IEEE Int. Conf. on Data
Engineering (ICDE), February 2002.
(http://cis.poly.edu/suel/papers/crawl.ps)

HTML specification (www.w3.org)

A free book on programming web agents.
(http://www.oreilly.com/openbook/webclient)

Software libraries (Java, Perl, Python, C++) for net
programming.

List of MIME-types at IANA IDs - ex.
(ftp://ftp.isi.edu/in-notes/iana/assignments/
media-types/

22
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