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The BM Algorithm

The Boyer-Moore (BM) algorithm for exact pattern matching was published
in 1977 by Robert S. Boyer and J. Strother More (with some input from
others, see the original paper for details). Like the KMP algorithm, the
BM algorithm uses a sliding window method, and it preprocesses the string
to create a shift-table (different from the KMP shift table). In contrast to
the KMP-algorithm, the sliding window is checked in the opposite direction
of the window’s slide direction, as illustrated below (shaded area means
matching characters).

For a pattern x and a string y, of length m and n, respectively, the code can
be expressed as follows (assuming the first character of a string has index 0):

i = 0

WHILE i < n-m

j = m-1

WHILE j >= 0 and x[j] == y[i+j]

j--

IF j < 0

RETURN "Match at position i"

i = i + BMShift[j]

Here, BMShift(j) is a safe shift (no possible occurrences of x in y are jumped
over) of the window, given the value of j at the exit of the inner WHILE-loop.
To define BMShift(j) in details, we first consider the case 0 ≤ j ≤ m−1, i.e.,
the current window position was an unsuccesful attempt. The two upper
levels of the figure below show the string y, the current window position for
the pattern x, and the area of known matching characters.



For a shifted window position overlapping the current window position, we
can deduce that for the shifted position to be able to contain an occurrence
(a full match between x and y), there must be matches between areas within
the pattern x (due to both areas in x are matching the same positions in y).
In the two lower levels of the figure above, these matching areas are indicated
by shading. This requirement of match within x we call R1.

As can be seen in the figure above, we separate the possible shifts into Type I
and Type II, depending on whether the start of the new window position is
past the point j of failure for the current window position. For Type I shifts,
we can deduce another requirement for the new window position to allow
an occurrence (a full match between x and y): the character a at index j
in x should not match the character in x which in the new window position
lines up with a, as illustrated in the following figure.

This restriction follows because we know that the corresponding character
in y is not a, since the current window position is unsuccessful. We call this
requirement between two characters of x for R2.

For a given value of j, we call a shift distance d (1 ≤ d ≤ m) for eligible
if it is of Type II and R1 is fulfilled, or it is of Type I and both R1 and
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R2 are fulfilled. The shift distance m is always eligible. We then (for each
0 ≤ j ≤ m− 1) define BMShift(j) to be the minimum eligible shift distance
for that j.

These values of BMShift(j) for 0 ≤ j ≤ m − 1 can be calculated in O(m)
time in total. We relegate to a separate note (two set of notes, actually) the
description of how to do it, since it is not entirely trivial.

We now consider the case j = −1, i.e., where the current window position
was a succesful attempt. In this case, we want the minimal shift distance
d ≥ 1 of x for which the overlap between the two positions of x matches, as
illustrated below.

This distance is called the period of x. Recalling from the discussion of the
KMP algorithm that the border of x is the largest proper prefix of x which
is also a suffix of x, it is clear from the figure that the two notions are related
as follows:

period(x) = m− border(x)

Since the preprocessing for the KMP algorithm involves computing the bor-
ders of all prefixes of x, including of x self, we already know how to compute
the period of x in O(n) time.

Summing up, the preprocessing for the BM algorithm involves computing
BMShift(j) for −1 ≤ j ≤ m− 1, which can be done in O(m) time.

The worst case complexity of the BM algorithm itself can be proven to be
O(n) for finding the first match. The proof of this is non-trivial, and is not
given here. Finding all matches of a pattern x in a string y can in the worst
case be Θ(mn), no better than the naive algorithm. This is for instance the
case if x and y are all a’s.

However, in most real-life applications, in particular with long patterns, the
shifts made during unsuccessful attempts mean that the BM algorithm often
reads only a subset of the characters in y. This is in contrast to the KMP
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algorithm, which always reads all characters in y. In almost all situations,
BM is significantly faster than KMP. Additionally, a small extension of BM
given by Galil runs in O(n) worstcase time, even when reporting all matches
(see separate note on the Galil version).

As a final note, the original BM algorithm also added a requirement R3,
which is the same as the one we in earlier notes have described under the
name Horspool heuristic. Thus, Horspool did not invent that heuristic.
Rather, he proposed (in 1980) to simplify the algorithm to use only R3.
Worstcase, this is Θ(mn) (also for unsuccessful searches), but even this
simple algorithm is often efficient in practice.
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