Transformations

Moving Objects

We need to move our objects in 3D space.

Y4 7, 2) =(rtdy, yrd,, z+d)

displacement
vector (d,, d},‘ d)

Moving Objects

We need to move our objects in 3D space.

Ya VL 2)=(x+d,,))4—4]’) »ztd)

dlsplacement
or (d,, d,

> An object/model (box, car, building, character,...) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

Moving Objects

We need to move our objects in 3D space.

Ya VL 2)=(x+d,, (‘H,,,{) »ztd)

dlsplacement
or (d,, d,

> An object/model (box, car, building, character,...) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

» Maybe in several places in one scene (town with houses and cars).

Moving Objects

We need to move our objects in 3D space.

Ya

splacement

di
vector (dy, dy, d.)

> An object/model (box, car, building, character,...) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

» Maybe in several places in one scene (town with houses and cars).

» Maybe in different places in different scenes/frames (animation).

Moving Objects

We need to move our objects in 3D space.

Ya

splacement

di
vector (dy, dy, d.)

> An object/model (box, car, building, character,...) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

» Maybe in several places in one scene (town with houses and cars).

» Maybe in different places in different scenes/frames (animation).

Moving Objects

We need to move our objects in 3D space.

Ya

splacement

di
vector (dy, dy, d.)

> An object/model (box, car, building, character,...) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

» Maybe in several places in one scene (town with houses and cars).

» Maybe in different places in different scenes/frames (animation).

Move model < move triangles < move points (vertices) < f : R® — R3

Translation

YA

o)t dys z+d)
displacement
vector (dy, dy\ &

N)

Translation

ra !,) =(wtd, yrdy, 2t}

displacement
vector (dy, d. d.)

Scaling

z

YA

P(sex, 8,7, 5-2)

Scaling

Rotation

box.cop. CIEX

Rotation

Rotation around line through origin:

Rotation

Rotation around line through origin:

Rotation

Simpler case: Rotation around z-axis.

7 §

Rotation

Simpler case: Rotation around z-axis.

vé

From formula for rotation in 2D (known from high school):

X X COS¢p — ysing
fly| =1 xsing+ ycoso
z z

Rotation

Similar: Rotation around x-axis and y-axis.

X
f yCcos¢ — zsing
ysin¢ + zcos ¢

X zsin ¢ + x cos ¢
fly) = y
z ZCos¢ — xsing

N < X

Euler

Theorem (Euler, 1775): any rotation with axis through origo can be
created as three succesive rotations around the three coordinate axes.

The angles of the three coordinate axis rotations are called Euler angles.

Using Euler angles to specify generic rotations is often intuitive, but also
has drawbacks. We will return to that later.

Matrices

Move model < move triangles < move points (vertices) < f : R3 — R3

Matrices

Move model < move triangles < move points (vertices) < f : R3 — R3

Any matrix induces a (linear) funktion f : R® — R3:

X 1 2 3 X Ix +2y 43z
fly|=14 5 6| -|y] =|[4x+by+6z
z 7 8 9 z 7x+ 8y + 9z

Matrices
Move model < move triangles < move points (vertices) < f : R3 — R3

Any matrix induces a (linear) funktion f : R® — R3:

X 1 2 3 X Ix +2y 43z
fly|=14 5 6| -|y|=|4x+5y+6z
z 7 8 9 z 7x+ 8y + 9z

Recall: Matrix multiplication is associative: A-(B-C)=(A-B)-C.

Matrices
Move model < move triangles < move points (vertices) < f : R3 — R3

Any matrix induces a (linear) funktion f : R® — R3:

1 2 3 X Ix +2y 43z
f =14 5 6|-|y|=]|4x+5y+6z
7 8 9 z 7x+ 8y + 9z

Recall: Matrix multiplication is associative: A-(B-C)=(A-B)-C.
Hence:

N < X

Matrices

Move model < move triangles < move points (vertices) < f : R3 — R3

Any matrix induces a (linear) funktion f : R® — R3:

X 1 2 3 X Ix +2y 43z
fly|=14 5 6| -|y] =|[4x+by+6z
z 7 8 9 z 7x+ 8y + 9z

Recall: Matrix multiplication is associative: A-(B-C)=(A-B)-C.

Hence:
A-(B-(C-(E-(F- [y =W((A-B)-C)-E)-F)- |y

Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Matrices

Move model < move triangles < move points (vertices) < f : R3 — R3

Any matrix induces a (linear) funktion f : R® — R3:

X 1 2 3 X Ix +2y 43z
fly|=14 5 6| -|y|=|4x+5y+6z
z 7 8 9 z 7x+ 8y + 9z

Recall: Matrix multiplication is associative: A-(B-C)=(A-B)-C.

Hence:
A-(B-(C-(E-(F- [y =W((A-B)-C)-E)-F)- |y

Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?

Transformations as Matrices

Transformations as Matrices

» Scaling
X 51X
fly]=1|sy
z ¥4

Transformations as Matrices

» Scaling
X S1x sis 0 O X
fly]=|(sy|=10 s 0| -y
z S3Z 0 0 s3 z

» Rotation angle ¢ around the z-axis

X X COS ¢ — ysing cos¢p —sing O
fly] =|xsing+ycos¢p | = [sing cosp 0
z z 0 0 1

Transformations as Matrices

» Scaling

» Rotation angle ¢ around the z-axis

X
fly] =
z

» Translation?

-
N < X

X COS ¢ — ysing
xsin¢ + y cos ¢

X
fly
V4

z

51X

Sy
S3Z

X + Xp

y+Yyo
zZ+ 2z

[cos¢p —sing 0 X
= |sing cos¢p O y

| O 0 1 z

77 7 [x

L V4

Transformations as Matrices

» Scaling
X S1x sis 0 O X
fly]=|(sy|=10 s 0| -y
z S3Z 0 0 s3 z

» Rotation angle ¢ around the z-axis

X X oS — ysing [cos¢p —sing 0 X
fly] =|xsing+ycos¢p | = |[sing cos¢p O0f: |y
z z | O 0 1 z
» Translation?
X X + Xp [? 7?2 2 X
flyl=|(y+»w]|=17 7 7|y
z zZ+ 7 777 z

No. Translation is not linear: f(xi + x3) # f(x3) + f(x3).

Homogeneous Coordinates

Go to 4D:

=N < X

Homogeneous Coordinates

Go to 4D:

And back:

S NS X

=N < X

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

1 0 0 xo X X + Xp
010 xw yl_|y+w
0 0 1 2z z z+ zg
0 0 0 1 1 1

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

1 0 0 xo X X + Xp
010 xw yl_|y+w
0 0 1 2z z z+ zg
0 0 0 1 1 1

All 3x3 matrices are still available (incl. skaling and rotation):

1 2 30 X Ix+2y 43z
4 5 6 0 y| |4x+5y+6z
7 8 9 0 z 7x+8y + 9z
0 0 01 1 1

Projection

Projection to screen: f : R3 — R2.

Projection
Projection to screen: f : R3 — R2.

Prespective projection:

base on the plane = = ar

((far/near) left,
(far/near) top, -far)

((far/near) right,
(fur/near) top, -far)
Viewing frustum

((far/near) lefi, ((far/near) right,
(far/near) bottom, -/ ; (far/near) bottom, -far)

e, t0p, -near)|

] viewing face (film) on the
/ viewing plane z = -near
Uef, botom, -ne7b right, bottom, -near)

/

OpenGL Window

Computer Screen

u]
o)
I
i
it

Projection
Projection to screen: f : R3 — R2.

Prespective projection:

base on the plane = = far
((far/near) lefi, ((far/near) right,
(far/near) top, -far) (far/near) top, far)

Viewing frustu

((far/near) lef, ; ((far/near) right,
(far/near) botiom, - ... A (far/near) bottom, -far)

(Uefi, top, -near)(“—right, top. -near)
/ viewing face (film) on the
___~ viewing plane = = -near

Uef, bottom, -neap)|

178
410,0,0)= apex] ﬁ

OpenGL Window

Computer Screen

Expressed as 4x4 matrix multiplication (d = —near):

O O O+
O O = O
~HEHk OO
o O O o
= N < X

xd/z
yd/z

Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

> glTranslatef (dx,dy,dz)

> glScalef (sx,sy,sz)

» glRotatef (angle,ax,ay,az)

Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

> glTranslatef (dx,dy,dz)

> glScalef (sx,sy,sz)

» glRotatef (angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies
it on the current matrix.

So last transformaton specified in code is first applied to vertices.

Cf. the math notation f(g(h(x))) (where h is applied first to x, then g,
then f).

Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

> glTranslatef (dx,dy,dz)

> glScalef (sx,sy,sz)

» glRotatef (angle,ax,ay,az)
Each command generates the corresponding matrix, and right-multiplies
it on the current matrix.
So last transformaton specified in code is first applied to vertices.

Cf. the math notation f(g(h(x))) (where h is applied first to x, then g,
then f).

There is a current matrix for model-view transformations, for projections,
and for textures. Each has a stack.

Matrix Stack

Code Modelview Matrix

glLoadldentity();

glTranslatef(0.0, 0.0, —15.0);

glPushMatrix();
/{Copy of M, placed on top.

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0);
//No change.

glPopMatrix();
//Back to before the push statement!

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8);
//No change.

Stack

|

s |

| MM, |y

Processing in code order

“The Trick”

y Y,
450
7.5,0.0)
; | .
X | :
(a) -
YA
(iii) Traj

nslate

(s F'-%’,ﬂ'liotate about origin

' X
i) Translate to origh

Example Program

Q>

