
DM842

Computer Game Programming II: AI

Lecture 10

Board Games

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Board GamesOutline

1. Board Games
MiniMaxing
Alpha-beta pruning
Monte Carlo Tree Search

2

Board GamesOutline

1. Board Games
MiniMaxing
Alpha-beta pruning
Monte Carlo Tree Search

3

Board GamesCombinatorial Game Theory

Combinatorial game theory studies deterministic, sequential two-players
games with perfect information

Is there some move I can make, such that for all moves my opponent
might make, there will then be some move I can make to win?

Perfect play is the behavior or strategy of a player that leads to
outcomes at least as good as any other strategy for that player
regardless of the response by the opponent, hence even if opponent is
infallible. (aka Optimal strategy)

A solved game is a game whose outcome (win, lose, or draw) can be
correctly predicted from any position, given that both players play
perfectly.

See http://en.wikipedia.org/wiki/Solved_game for a list of
solved games.

4

http://en.wikipedia.org/wiki/Solved_game

Board GamesGames vs. search problems

Search problem in a game tree (search tree overlapped on the game tree)

initial state: root of game tree

successor function: game rules/moves

terminal test (is the game over?)

utility function, gives a value for terminal nodes (eg, +1, -1, 0)

5

Board Games

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

6

Board GamesSolved Games

A two-player game can be "solved" on several levels:

Ultra weak: Prove whether the �rst player will win, lose, or draw from
the initial position, given perfect play on both sides.
It can be non-constructive.

Weak: Provide an algorithm that secures a win for one player, or a draw
for either, against any possible moves by the opponent, from the
beginning of the game.

Strong: Exhaustively search a game tree to �gure out what would
happen if perfect play were realized. Provides optimal strategy from any
position.

A minimax algorithm that exhaustively traverse the game tree would provide
a strong proof.

7

Board GamesMeasures of game complexity

State-space complexity: number of legal positions reachable from the
initial state. Most often, an upper bound that includes illegal positions.

Game tree size: total number of possible games that can be played, ie,
number of leaves of the game tree.

Computational complexity of the generalized game (eg, played on a
n × n board): often PSPACE-complete (set of all decision problems that
can be solved by a Turing machine using a polynomial amount of space
and for which every other problem that can be solved in polynomial
space can be transformed to one of these problems in polynomial time.)

Eg: Quanti�ed Boolean formulas

∃x1,∀x2∃x3 : (x1 ∨ x2) ∧ (x2 ∨ x3)

8

Board GamesOutline

1. Board Games
MiniMaxing
Alpha-beta pruning
Monte Carlo Tree Search

9

Board GamesMiniMaxing

Starting from the bottom of the tree, scores are bubbled up according to the
minimax rule:

on our moves, we are trying to maximize our score

on opponent moves, the opponent is trying to minimize our score

(Perfect play for deterministic, perfect-information games)

Important Choice: Search whole tree (solves the game but only feasible for
very simple games) or use a max search depth + heuristic.

10

Board GamesExample

2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

11

Board GamesMinimax algorithm

Recursive Depth First Search:

12

Board GamesProperties of minimax

Time complexity: O(bm)
Space complexity: O(m) (depth-�rst exploration)

b branching factor
m search depth
But do we need to explore every path?

13

Board GamesMiniMaxing with heuristic

Instead of searching to terminal position, search a �xed depth and use a
heuristic (we are no longer sure that we play optimally).

static evaluation function: heuristic to score a state of the game for one player

it re�ects how likely a player is to win the game from that board position

knowledge of how to play the game (ie, strategic positions) enters here.

the domain is the natural numbers (−100; +100)

Eg. in Chess: ±1000 for a win or loss, 10 for the value of a pawn

there may be several scoring functions which are then combined in a
single value (eg, by weighted sum, weigths can depend on the state of
the game)

14

Board GamesEvaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) � (number of black queens), etc.

15

Board GamesNegamaxing

For two player and zero sum games:
If one player scores a board at −1, then the opponent should score it at +1

 simplify the minimax algorithm.

adopt the perspective of the
player that has to move

at each stage of bubbling up, all
the scores from the previous level
have their signs changed

largest of these values is chosen
at each time

Simpler implementation but same complexity

16

Board GamesOutline

1. Board Games
MiniMaxing
Alpha-beta pruning
Monte Carlo Tree Search

17

Board GamesExample

18

Board GamesAlpha-beta pruning

Ignore sections of the tree that cannot contain the best move. Maintain two
values:

Alpha - Smallest value that the max player is assured of.

Beta - Largest value that the min player is assured of.

When investigating its children, what if the min player, when investigating
node v �nds a node with value smaller than alpha?
Good News? No. Since the parent of v is a max node, it will simply not
allow the play to go to v . This means that we do not need to consider the

subtre rooted in v anymore, since play will never to there.

Similar reasoning holds for when the max player �nds a node with value
greater than beta.

19

Board GamesExample

MAX

3 12 8

MIN 3

3

20

Board GamesExample

MAX

3 12 8

MIN 3

2

2

X X

3

21

Board GamesExample

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

22

Board GamesExample

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

23

Board GamesExample

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

24

Board GamesThe α�β algorithm

25

Board GamesProperties of α�β

(α, β) search window: we (max player) will never choose to make moves
that score less than alpha, and our opponent will never let us make
moves scoring more than beta.

Pruning does not a�ect �nal result

Good move ordering improves e�ectiveness of pruning (shrinks window)
consider �rst most promising moves: Use heuristics

With �perfect ordering,� time complexity = O(bm/2)

Can be used in Negamax (in each step, swap alpha and beta and invert
their signs)

26

Board GamesDeterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Weakly solved in 2007, the game is a draw with
perfect play.

Kalaha (6,6) solved at IMADA in 2011

Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go (2014): human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

27

Board GamesDeterministic games in practice

Go (2014): human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves. Not true anymore! In May
2017 AlphaGo beat the no. 1 human player Ke Jie.
AlphaGo uses a variety of techniques including Monte Carlo Tree Search
and Neural Networks.

28

Board GamesOutline

1. Board Games
MiniMaxing
Alpha-beta pruning
Monte Carlo Tree Search

29

Board GamesMonte Carlo Tree Search

Good heuristics can be very hard to come up with. Especially if not much is
known about the game.

Idea: From a given position, use random playouts to evaluate it. If a player
wins 73/100 playouts from a position, then that position is likely to be good
for the player.

In reality, we do something slightly more sophisticated. We would like to bias
our random search towards the most promising parts of the tree.

30

Board GamesTool: Multi-Armed Bandit Problem

100 di�erent Multi-Armed Bandits. Which is best?

Stategy UCB1: Pick best machine according to upper bound of con�dence
interval given by

x̄i ±
√

2 ln n

ni

x̄i is mean payout on machine i
ni is number of plays on machine i
n is total number of plays

(balances playing all of the machines to gather information with
concentrating your plays on the observed best machine)

31

Board Games1. Selection

Game tree with recorded number of wins from each node.

Start from a given position. Use UCB1 to select a child until you reach a
node which has a child with a 0/0 record.

32

Board Games2. Expansion

Chose a random 0/0 child of the previously selected node.

33

Board Games3. Simulation

Simulate a random game from the selected node.

34

Board Games4. Back-Propagation

Update the winner in all nodes on the path.

35

Board GamesMoving

After running step 1-4 for the allowed amount of time, we pick the best move
according UCB1.
We can keep using the tree we have already built (both in this play and
future plays).

36

Board GamesSummary: AI4GP

1. Movement

2. Path�nding

3. Decision making

4. Tactical and strategic AI

5. Board game AI

37

	Board Games
	MiniMaxing
	Alpha-beta pruning
	Monte Carlo Tree Search

