
DM842

Computer Game Programming: AI

Lecture 3

Movement Behaviors

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

2

Summery

Kinematic Movement

Seek

Wandering

Steering Movement

Variable Matching

Seek and Flee

Arrive

Align

Velocity Matching

Delegated Steering

Pursue and Evade

Face

Looking Where You Are Going

Wander

Path Following

Separation

Collision Avoidance

Obstacle and Wall Avoidance

Combined Steering

Blending

Priorities

Cooperative Arbitration

Steering Pipeline

3

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

4

Combined Steering

First path�nding then Seek

in fact, due to collision avoidance, more complicated: need for
combination of steering behaviors

combining steering output and pipeline architectures

1. blending: executes all the steering behaviors and combines their
results using some set of weights or priorities.
is the �nal movement feasible?

2. arbitration: select one or more steering to have full control.

5

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

6

Weighted Blending

crowd of rioting characters, want a mass movement where they stay by
the others, while keeping a safe distance.

blending: arriving at the center of mass of the group and separation
from nearby characters.

weighted linear sum of acceleration (weights do not need to sum to 1)
� if above maximum, set to max Acceleration

research on evolving weights using genetic algorithms or neural networks.
Results not encouraging.

7

Weighted Blending

� �
class BlendedSteering:

behaviors # list of behavior and weight

maxAcceleration
maxRotation

def getSteering():
steering = new Steering()
for behavior in behaviors:

steering += behavior.weight * behavior.getSteering()
if steering.linear.length()> maxAcceleration:
steering.linear.normalize()
steering.linear *= maxAcceleration

if steering.angular > maxRotation:
steering.angular.normalize()
steering.angular *=maxRotation
return steering� �

8

Flocking and Swarming

Flocking of boids (simulated birds) or herding of animals is obtained by
weighted blend of (Craig Reynolds):

separation, move away from boids that are too close

cohesion, move towards the center of mass of the �ock

alignment and velocity matching, move in the same direction and at the
same velocity as the �ock

Equal weights but order of importance would be separation, cohesion,
alignment. Also radius cut-o� for only neighbors.

9

Problems with Blending

blending works in sparse outdoor environments, in more constrained
settings hard to debug

con�icting behaviors: unstable and stable equilibrium

obstacles and narrow passages

nearsightedness, solved by path�nding

10

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

11

Priorities

seek and evade always produce an acceleration
collision avoidance, separation, and arrive may suggest no acceleration. But
when they do, it should not be ignored or diluted!

priority-based system: behaviors are arranged in groups with regular
blending weights. Groups are then placed in priority order.

if the total result of a group is small (≤ ε parameter), then it is ignored
and the next group is considered. Otherwise the acceleration is applied
immediately and other groups ignored.

Example: pursuing character with 3 groups: collision avoidance,
separation and pursuit� �

class PrioritySteering:
groups # list of BlendedSteering instances

epsilon
def getSteering():

for group in groups:
steering = group.getSteering()
if steering.linear.length() > epsilon or abs(steering.angular) > epsilon:

return steering
return steering� �

12

Advantages

adding a group (eg, wandering) can help to break unstable equilibria, but
probably not stable ones

Variable priorities:
compute the steering of each group, sort the steering in decreasing
order, select the �rst.
(adds computation time)

13

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

14

Cooperative Arbitration

Blending has stability problems

Priorities may lead to abrupt changes

Trend towards cooperation among di�erent behaviors. That is, the
response of one steering behavior becomes context aware
 adds complexity.

Cooperative Steering is handled with

decision making techniques, ie, decision trees and state machines

pipeline techniques

15

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

16

Steering Pipeline

Four stages in the pipeline:

targeters work out where the movement goal is
channels: positional target, orientation target, velocity target, and
rotation target
not �away from�

decomposers provide sub-goals that lead to the main goal,
like path�nding, sequence of decomposers on increasing level of detail

constraints limit the way a character can achieve a goal,
represent moving or static obstacles
gets the path from actuators
determines sub-goals by �nding the point of closest approach and
projecting it out so that we miss the obstacle by far enough
may require looping and deadlock resolution (call to planning or
path�nding)

actuator limits the physical movement capabilities of a speci�c character.
may decide which channels of subgoals take priority and which are
eliminated

17

� �
class SteeringPipeline:

targeters
decomposers
constraints
actuator
constraintSteps
deadlock
kinematic # current kinematic data for the character

def getSteering():
goal # top level goal

for targeter in targeters:
goal.updateChannels(targeter.getGoal(kinematic))

for decomposer in decomposers:
goal = decomposer.decompose(kinematic, goal)

validPath = false
for i in 0..constraintSteps:

path = actuator.getPath(kinematic, goal)
for constraint in constraints:

if constraint.isViolated(path):
goal = constraint.suggest(path, kinematic, goal)
break continue

return actuator.output(path, kinematic, goal)
return deadlock.getSteering()� �

18

Compromise between path�nding and more simple and fast movement
behaviors.
If computationally costly needs to be spread through more than one frame.

Paths implementations:

series of line segments, giving point-to-point movement information.
Good for characters that can turn quickly.

list of maneuvers, such as �accelerate� or �turn with constant radius.�
Suitable for complex steering requirements, including race car driving,
harder for constraint checking

19

Obstacle Avoidance

20

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

21

Motor Control

increasingly, motion is being controlled by physics simulation: actuators

Steering algorithms send movement requests to physics engine and
actuators check feasibility

eventually actuators must change the suggestion of the steering alg in
order to match animation feats (eg, car turning)

Two ways to implement this:

output �ltering: simply remove all the components of the steering
output that cannot be achieved.
it does not work well where there is a small margin of error in the
steering requests.

capability-sensitive steering: actuators brought within steering
(not with combined steering)

22

Capability-Sensitive Steering

if few actions try them all and choose the best
otherwise, heuristics

23

Heuristics

Human characters:

If stationary or moving very slowly, and at a very small distance from its
target, step there directly, even if this involves moving backward or
sidestepping.

If the target is farther away, the character will �rst turn on the spot to
face its target and then move forward to reach it.

If moving with some speed, and target is within a speed-dependent arc
in front of it, then continue to move forward but add a rotational
component (still using the straight line animation � hence some limit to
how much rotation)

If the target is outside its arc, then it will stop moving and change
direction on the spot before setting o� once more.

24

Heuristics

Cars and motorbikes

If stationary, then accelerate.

If moving and target lies between the two arcs, then brake while turning
at the maximum rate that does not cause a skid.

If target inside the forward arc, then continue moving forward and steer
toward it. Move as fast as possible

If target inside the rearward arc, then accelerate backward and steer
toward it.

25

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

26

Predicting Physics

Needs for physics simulation:

current position of a ball and move to intercept the ball

character correctly calculating the best way to throw a ball so that it
reaches a teammate who is running.

where to stay to minimize chance of being hit by a grenade

shoot accurately, and respond to incoming �re

predicting trajectories

27

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

28

Firing Solution

Projectile trajectory

pt = p0 + usmt +
g t2

2

sm muzzle velocity (speed at which the projectile left the weapon)
u is the direction the weapon was �red (normalized vector)
g = −9.81m/s2 but in games about the double is used

Predicting a Landing Spot

ti =
−uy sm ±

√
u2y s

2
m − 2gy (py0 − pyt)

gy
py =

px0 + uxsmti
py0

pz0 + uzsmti



29

Firing Solution

Given a �ring point S and sm (may be varied too, eg, with grenades) and a
target point E , we want to know the �ring direction u, |u| = 1.

Ex = Sx + uxsmti +
1

2
gx t

2
i

Ey = Sy + uy smti +
1

2
gy t

2
i

Ez = Sz + uzsmti +
1

2
gz t

2
i

1 = u2x + u2y + u2z

four eq. in four unknowns, leads to:

|g |2t4i − 4(g ·∆ + s2m)t2i + 4|∆|2 = 0, ∆ = E − S

solve in t, and get two solutions

u =
2∆− g t2i
2smti

typically choose the lower one

30

Drag: Air Resistance

The path is not anymore a parabola

Highly simpli�ed: the drag force can be described as: D = −kv − cv2, v
velocity of projectile and k , c are parameters. Equation of motion is non
linear di�erential equation

p′′t = g − kp′t − cp′t |p′t |

iterative method via simulation, alternatively, removing �nal term we can
solve

pt =
g t − Ae−kt

k
+ B, A = smu −

g

k
, B = p0 −

A

k

31

Iterative Targeting Technique

We wish to solve the �ring solution controlling its accuracy to make sure we
can hit small or large objects correctly.

start with a tentative direction

simulate real projectile motion by a physics system

continue guessing until within a radius from target

To guess one can use the equations without drag or the one with drag
simpli�ed.

Binary search: �nd a tentative upper or lower bound, then the opposite
bound and continue by binary search.

Only possible when the physics engine can easily set up isolated simulations
(ie, di�erent from the current game world) and it is fast enough

32

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

33

Jumping

Jumping between platforms...
steering controller needs to check that the character is moving at i)
correct speed ii) correct direction iii) jump action is executed at the right
moment. Rather complex!

Simpler support leaves to the designer the choice of jump points and
minimal component velocity in the right direction

34

To carry out the jump the character undergoes the following steps:

1. decide to make a jump by the path�nding system or a simple steering
behavior

2. recognize which jump by path�nding system or by steering behaviour
with lookahead.

3. once found the jump point to use: velocity matching steering behaviour
to bring the character into the jump point with correct velocity and
direction.

4. once on the jump point, launch a jump action, the game engine will do
the rest.

35

Problem resolutions:

designer incorporates more information into the jump point data, ie,
restrictions on approach velocities (bug prone)

designer puts jump points such that the AI cannot fail

incorporate in path�nding

landing pads + characters use trajectory prediction to calculate the
velocity required to jump from jump point to landing pad + velocity
matching

vy is upwards velocity of jump and it is given, we wish to �nd vx , vz .
Three equations in three unknowns

Ex = Sx + vx t
Ey = Sy + vy t + 1

2
gy t

2

Ez = Sz + vz t

t =
−vy±
√

2g(Ey−Sy)+v2y
g

vx = Ex−Sx

t

vz = Ez−Sz

t

36

� �
class Jump (VelocityMatch):
jumpPoint
canAchieve = False
maxSpeed
maxYVelocity
def getSteering():
if not target:
target = calculateTarget()

if not canAchieve:
hence no steering towards target

return new SteeringOutput()
if character.position.near(target.

position) and
character.velocity.near(target.

velocity):
we jump hence no steeering

scheduleJumpAction()
return new SteeringOutput()

return VelocityMatch.getSteering()� �

� �
def calculateTarget():
target = new Kinematic()
target.position = jumpPoint.

jumpLocation
sqrtTerm = sqrt(2*gravity.y*jumpPoint

.deltaPosition.y +
maxYVelocity*

maxVelocity)
time = (maxYVelocity - sqrtTerm) /

gravity.y # 1st

if not checkJumpTime(time):
time = (maxYVelocity + sqrtTerm) /

gravity.y # 2nd

checkJumpTime(time)

def checkJumpTime(time):
vx = jumpPoint.deltaPosition.x / time
vz = jumpPoint.deltaPosition.z / time
speedSq = vx*vx + vz*vz
if speedSq < maxSpeed*maxSpeed:
target.velocity.x = vx
target.velocity.z = vz
canAchieve = true

return canAchieve� �
37

Hole Fillers

Another approach:

jump area detector

character leads towards them with a steering opposite to wall avoidance:
move towards them at full speed

when the character enters in the area it executes the jump

more �exibility in jumping point

no control on the landing point

38

Outline

1. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

2. Motor Control

3. Predicting Physics
Firing Solutions

4. Jumping

5. Coordinated Movement

39

Coordinate Movement

Individuals can

1. make decisions as a whole and move in a prescribed, coordinated group
(top down) or

2. make decisions that complement each other (bottom up)

40

Coordinate Movement

Top down approach:

Formation: a set of locations where a character can be positioned. One
location is the leader position.

Formation motion is the movement of a group of characters retaining group
organization

41

Fixed Formations

The leader moves independently from formation

the others follow with no need for kinematics or steering:

~p′s = ~pl + ~Θl~ps position,Θorientation matrix
θs = θl + θs orientation

but leader needs to take care of the size of the formation when moving

Scalable Formations: slots computed by a size-dependent function
Emergent Formations

each character has its own steering system using the arrive behavior.

each agent selects as target one of the others agents in the formation
(eg, V formation)

the formation emerges from the individual rules of each character, like in
�ocking

characters can react individually

it may be hard to design rules for the desired shape
42

Combined Fixed and Emergent

Two-level formation steering:

First level: �xed formation (with a leader that moves it)

Second level: characters move autonomously avoiding collisions and
targetting locations with an arrive behaviour

actually no need for a leader, the formation moves alone around an
anchor point (eg, center of mass of slots)

steering of anchor points must look at formation, speed moderated if
agents not in their slots.

o�set to move a small distance ahead
of the center of mass
pa = pc + ko�setv c

pc position of center of mass of chars.
v c velocity of venter of mass

43

Formations of formations

Anchor point of one formation tries to stay in a slot position of another
formation
wedge (V) formation + column formation

44

Slot Roles and Assignments

Problems:

slots may have roles that cannot be occupied by whatever character, eg,
leader slots (hard roles)

there may be more than one agent for each role

each character may have one or more roles that it can ful�ll

May end up in an infeasible situation in which characters are left stranded
with nowhere to go.

Simpli�cation: use soft slots with a slot cost for each character

45

Slot Assignment

Brute force, ie, all slot assignments, is not practicable

assignment problem by Hungarian method in O(n3) but generalized
assignment problem is NP-hard

heuristic:

1. sort characters highly constrained �rst and �exible characters last,
ie in increasing order of

∑
j∈A(i) 1/(1 + cij), cij is slot cost for agent

i , A(i) is feasible slots for i .
cij can include distance.

2. assign the agents considered in the formed order to the best free
slot.

Even this can be too slow and must be split over several frames.

46

Dynamic Slots and Plays

Formations that change shape over time, eg, in sport games

changes of patterns can be jumps (arrive behaviour of characters will
take care) or smooth

typically no need for more than one level

47

Tactical Movement

Another application of dynamic formation: approximation of bounding
overwatch. Formation moves in a predictable sequence between whatever
cover is near to the characters.

cover points are in the environment rather than geometrically determined.

48

Summary

Predicting Physics

Firing Solutions

Jumping

Coordinated Movement

49

	Combined Steering
	Blending
	Priorities
	Cooperative Arbitration
	Steering Pipeline

	Motor Control
	Predicting Physics
	Firing Solutions

	Jumping
	Coordinated Movement

