
DM842

Computer Game Programming: AI

Lecture 4
Movement in 3D

Path Finding

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Movement in 3D

2. Pathfinding

2

Movement in 3D

So far we had only orientation and rotation in the up vector.

roll > pitch > yaw
 we need to bring the third dimension in orientation and rotation.

3

Euler axis and angle

Any rotation can be expressed as a
single rotation about some axis
(Euler’s rotation theorem). The axis
can be represented as a 3D unit vector
e = [ex ey ez]

T, and the angle by a scalar
θ.

r = θe

4

Quaternions

Quaternion: normalized 4D vector: q̂ = [q1 q2 q3 q4]
T

related to axis and angle:

q1 = cos (θ/2)
q2 = ex sin (θ/2)
q3 = ey sin (θ/2)
q4 = ez sin (θ/2)

it follows:

q2
1 + q2

2 + q2
3 + q2

4 = 1

a+ bi + cj + dk with {a, b, c , d} ∈ R
and where {1,i, j, k} are the basis
(hypercomplex numbers).
The following must hold for the basis

i2 = j2 = k2 = ijk = −1

which determines all the possible
products of i , j , and k :

ij = k , ji = −k,
jk = i , kj = −i ,
ki = j , ik = −j ,

A good 3D math library of the graphics engine will have the relevant code to
carry out combinations rotations, ie, products of quaternions.

5

Summary

Kinematic Movement
Seek

Wandering

Steering Movement
Seek and Flee

Arrive

Align

Velocity Matching

Delegated Steering
Pursue and Evade

Face

Looking Where You Are Going

Wander

Path Following

Separation

Collision Avoidance

Obstacle and Wall Avoidance

6

Steering Behaviours in 3D

Behaviours that do not change angles do not change: seek, flee, arrive,
pursue, evade, velocity matching, path following, separation, collision
avoidance, and obstacle avoidance

Behaviours that change: align, face, look where you’re going, and
wander

7

Align
Input a target orientation
Output rotation match character’s current orientation to target’s.

q̂ quaternion that transforms current orientation ŝ into t̂ is given by:

q̂ = ŝ−1t̂

ŝ−1 = ŝ∗ conjugate because unit quaternion (corresponds to rotate with
opposite angle, θ−1 = −θ)

ŝ∗ =


r
i
j
k


−1

=


r
−i
−j
−k


ŝ∗ =


s1 = cos (−θ/2)
s2 = ex sin (−θ/2)
s3 = ey sin (−θ/2)
s4 = ez sin (−θ/2)




To convert q̂ back into an axis and angle:

θ = 2 arccos q1 e =
1

2 sin(θ/2)

q2
q3
q4


Rotation speed: equivalent to 2D start at zero and reach θ and combine
this with the axis e.

8

Face and Look WYAG
Input a vector (from the current character position to a target, or the
velocity vector).
Output a rotation to align the vector
That is: position the z-axis of the character in the input direction

In 2D we used θ = arctan(vx/vz) knowing the two vectors. In 3D infinite
possibilities

9

Align to a vector

v1: unit vector pointing in direction we are currently looking.
v2: unit vector in direction we want to look.

r = v1 × v2 = sin(θ)a
where θ is the angle between v1 and v2, and a is the axis we want to rotate
around. Since a is a unit vector, we can find the angle. We now have axis
and angle → put it into quaternion.

Special case: The cross product will be 0 if v1 and v2 are pointing in the
same or opposite directions. If they point in same direction, no rotation
needed. If they point in opposite directions, rotate v1 π radians around any
axis (to make it point in the opposite direction).

10

Wandering

In 2D

keeps target in front of character
and turning angles low

In 3D:

3D sphere on which the target is
constrained,

offset at a distance in front of the
character.

to represent location of target on the
sphere, more than one angle.
quaternion makes it difficult to
change by a small random amount

3D vector of unit length. Update its
position adding random amount
< 1√

3
to each component and

normalize it again.

11

To simplify the math:

wander offset (from char to center of sphere) is a vector with only a
positive z coordinate, with 0 for x and y values.

maximum acceleration is also a 3D vector with non-zero z value

Use Face to rotate and max acceleration toward target

Rotation in x–z plane more important than up and down (eg for flying
objects) two radii

12

� �
class Wander3D (Face3D):
wanderOffset # 3D vector
wanderRadiusXZ
wanderRadiusY
wanderRate # < 1/sqrt(3) = 0.577 to avoid ending up with a zero vector
wanderVector # current wander offset orientation
maxAcceleration # 3D vector
... Other data is derived from the superclass ...
def getSteering():
Update the wander direction
wanderVector.x += (random(0,1)-random(0,1)) * wanderRate
wanderVector.y += (random(0,1)-random(0,1)) * wanderRate
wanderVector.z += (random(0,1)-random(0,1)) * wanderRate
wanderVector.normalize()
Calculate the transformed target direction and scale it
target = wanderVector * character.orientation
target.x *= wanderRadiusXZ
target.y *= wanderRadiusY
target.z *= wanderRadiusXZ
Offset by the center of the wander circle
target += character.position + wanderOffset * character.orientation
steering = Face3D.getSteering(target)
steering.linear = maxAcceleration * character.orientation
return steering� �

13

Outline

1. Movement in 3D

2. Pathfinding

14

Motivation
For some characters, the route can be prefixed but more complex characters
don’t know in advance where they’ll need to move.

a unit in a real-time strategy game may be ordered to any point on the
map by the player at any time

a patrolling guard in a stealth game may need to move to its nearest
alarm point to call for reinforcements,

a platform game may require opponents to chase the player across a
chasm using available platforms.

We’d like the route to be sensible and as short or rapid as possible

 pathfinding (aka path planning) finds the
way to a goal decided in decision making

15

Graph representation

Game level data simplified into directed non-negative weighted graph

node: region of the game level, such
as a room, a section of corridor, a
platform, or a small region of
outdoor space

edge/arc: connections, they can be
multiple

weight: time or distance between
representative points or a
combination thereof

16

Best first search

State Space Search
We assume:

A start state

A successor function

A goal state or a goal test function

Choose a metric of best
Expand states in order from best to worst

Requires:
Sorted open list/priority queue
closed list
unvisited nodes

17

Best first search

Definitions

Node is expanded/processed when taken off queue

Node is generated/visited when put on queue

g -cost is the cost from the start to the current node

h-cost is a guess (heuristic) of the cost from the current node to the goal

c(a, b) is the edge cost between a and b

Algorithm Measures

Complete
Is it guaranteed to find a solution if one exists?

Optimal
Is it guaranteed to find the optimal solution?

Time

Space

18

Best-First Algorithms

Best-First Pseudo-Code� �
Put start on OPEN
While(OPEN is not empty)
Pop best node n from OPEN # expand n
if (n == goal) return path(n, goal)
for each child of n: # generate

children
put/update value on OPEN/CLOSED

put n in CLOSED
return NO PATH� �

Best-First child update� �
If child on OPEN, and new cost is less
Update cost and parent pointer

If child on CLOSED, and new cost is less
Update cost and parent pointer, move

node to OPEN
Otherwise
Add to OPEN list� �

19

Search Algorithms

Dijkstra’s algorithm ≡ Uniform-Cost Search (UCS)
 Best-first with g -cost
Complete? Finite graphs yes, Infinite yes if ∃ finite cost path, eg, weights

> ε
Optimal? yes

Idea: reduce fill nodes: Heuristic: estimate of the cost from a given state to
the goal

Pure Heuristic Search / Greedy Best-first Search (GBFS)
 Best-first with h-cost
Complete? Only on finite graph
Optimal? No

A∗

 best-first with f -cost, f = g + h.
Optimal? depends on heuristic

20

Termination
When the node in the open list with the smallest cost-so-far has a cost-so-far
value greater than the cost of the path we found to the goal, ie, at expansion.
(like in Dijkstra)

Note: with any heuristic, when the goal node is the smallest
estimated-total-cost node on the open list we are not done since a node that
has the smallest estimated-total-cost value may later after being processed
need its values revised.

In other terms: a node may need revision even if it is in the closed list (6=
Dijkstra) because we may have been excessively optimistic in its evaluation
(or too pessimistic with the others).

(Some implementations may stop already when the goal is first visited, or
expanded, but then not optimal)

However if the heuristic has some properties then we can stop earlier:

21

Theorem

If the heuristic is:
admissible h(n) ≤ h∗(n) where h∗(n) is the true cost from n to goal
(h(n) ≥ 0, so h(G) = 0 for any goal G)

consistent

h(n) ≤ c(n, n′) + h(n′) n′ sucessor of n

(triangular inequality holds)
then when A∗ selects a node for expansion (smallest estimated-total-cost),
the optimal path to that node has been found.

E.g., hSLD(n) (straight line distance) never overestimates the actual road
distance

Note:

consistent ⇒ admissible

22

Heuristic Examples.
E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = 6
h2(S) = 4+0+3+3+1+0+2+1 = 14

23

To Reopen or not in A∗?

An admissable heuristic in enough to allow us to terminate in A∗ after
expanding the goal.

If we require our heuristic to be consistent, we will never have to open any
closed node, since each one will be expanded only when the shortest path to
it has been found → better running time.
(Similar to Dijkstra)

24

Optimality of A∗

A heuristic is consistent if

h(n) ≤ c(n, n′) + h(n′)

If h is consistent, we have

f (n′) = g(n′) + h(n′)

= g(n) + c(n, n′) + h(n′)

≥ g(n) + h(n)

= f (n)

This gives us Observation 1: f (n) is nondecreasing along any path. (note
that g is the cost of getting to the current node in this specific path)

25

Optimality of A∗

Observation 2: When A∗ selects a node, n, for expansion, the optimal path
to that node has been found.

Using Observation 1, we see that if a shorter unexplored path to n existed,
we would instead expand a node on that path, since it has smaller f value.

26

Optimality of A∗

Observation 3: When the goal state is expanded, we have found the
shortest path to it.

Follows from Observation 2.

27

A∗ vs. Breadth First Search

28

Properties of A∗

Complete? Yes
Optimal? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f (n) < C∗

A∗ expands some nodes with f (n) = C∗

A∗ expands no nodes with f (n) > C∗

Time: O(|E |+ V logV + V · h), where E is the number of edges and V is
the number of nodes (vertices), and h is the time needed to calculate the
heuristic. As long as the time for h is O(logV), the last term can be omitted.
Note, that for V and E , we only need to count those nodes (and their
edges), whose f-value is less than or equal to that of the goal since other
nodes are never processed. Using heuristic 0 gives Dijkstra, but a better
heuristic greatly improves running time.
Space: O(V) Keeps all nodes in memory

29

	Movement in 3D
	Pathfinding

