
DM842

Computer Game Programming: AI

Lecture 6

Decision Making

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

2

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

3

Open Goal Path�nding

Multiple goals could cause problems. How should heuristic behave?

Probably ideal that goal is decided in decision making and heuristic act
according to single goal.

4

Dynamic Path�nding

Environment is changing in unpredictable ways or its information is
incomplete.

Replan from scratch each time new information is collected or

Replan only the part that has changed D∗. Requires a lot of storage
space.

5

Memory-Bounded Search

Try to reduce memory needs

Iterative-deepening A∗ (IDA∗)

Simpli�ed Memory Bounded A∗ (SMA∗)

6

Iterative Deepening A∗

IDA∗

Idea from classical Uniformed Iterative Deepening
depth-�rst search where the max depth is iteratively increased

skip open and closed list

depth-�rst search with cuto� on the f -cost

cuto� set on the smallest f -cost of nodes that exceeded the threshold at
the previous iteration

very simple to implement but less e�cient

good variant for goal-oriented action planning in decision making

7

Properties of IDA∗

Complete Yes
Time complexity Exponential
Space complexity linear
Optimal Yes. Also optimal with non-consistent heuristic (but admissability is
needed)

8

Simple Memory-Bounded A∗

Use all available memory

Follow A∗ algorithm and �ll memory with new expanded nodes

If new node does not �t

remove stored node with worst f -value
propagate f -value of removed node to parent

SMA∗ will regenerate a subtree only when it is needed
the path through subtree is unknown, but cost is known

9

Properties of SMA∗

Complete Yes, if there is enough memory for a solution path
Time Same as A∗ if enough memory to store the shortest path tree
Space Use available memory
Optimal Yes, if enough memory to store the best solution path

In practice, good trade-o� between time and space requirements

10

Other Issues

Interruptible Path�nding

rendering needs to run every 1/60 or 1/30 of a second (= 0.6ms)

A* algorithm can be easily stopped and resumed.

data required to resume are all contained in the open and closed lists.

In Real Time Strategy games: possible many requests to path�nding at the
same time

serial problems for time, parallel problems for space

central pool of path�nding + path �nding queue (FIFO).

information from previous path�nding runs could be useful to be stored
(especially valid for hierarchical path�nding)

11

Continuous Path�nding

Vehicle path�nding: eg, police car pursuing a criminal
Split down by placing a node every few yards along the road
path = a period of time in a sequence of adjacent lanes.

But cars are moving. Depending on the speed the gap may be there or not.

A∗ in a graph where nodes represent states rather than positions

a node has two elements: a position and a time.

an edge exists between two nodes if the end node can be reached from
the start node and if the time it takes to reach the node is correct.

two di�erent nodes may represent the same position

Requires heuristic assumptions to avoid large size graphs.

12

graph created dynamically: connections, so they are built from scratch
when the outgoing connections are requested from the graph.

retrieving the out-going connections from a node is a very
time-consuming process avoid A∗ versions that need recalculations

It should be used for only small sections of planning.
Eg, plan a route for only the next 100 yards or so. The remainder of the
route planned on intersection-by-intersection basis.
Hierarchical Path�nding, with the continuous planner being the lowest
level of the hierarchy.

13

Movement Planning

If characters are highly constrained, then the steering behaviors might
not produce sensible results. Eg: urban driving.

Chars have, eg, walk animation, run animation, or sprint animation

Animations need speci�c conditions for being believable

Plan sequence of animations to reach a large scale maneuver

14

Movement planning uses a graph representation. Each node of the graph
represents both the position and the state of the character at that point,
ie, the velocity vector, that determines the set of allowable animations
that can follow

Connections in the graph represent valid animations; lead to nodes
representing the char after the animation

Route returned consists of a set of animations

If the velocities and positions are continuous, then in�nite number of
possible connections. Heuristic only returns the best successor nodes for
addition to the open list.

Similarly to continuous path�nding, graph is generated on the �y.

15

Example

Walking bipedal character

Animations: walk, stand to walk, walk to stand, sidestep, and turn on the
spot.
They can be applied to a range of movement distances
Positions: Each animation starts or ends from one of two positions:
mid-walk or standing still.
Some positions in the environment are forbidden

State machine: positions ≡ states and transitions ≡ animations.

Goal: range of positions with no orientation.

16

Result from A∗:

17

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

18

Decision Making

Decision Making: ability of a character to decide what to do.
We saw already how to carry out that decision (movement, animation, ...).
From animation control to complex strategic and tactical AI.

state machines,

decision trees

rule-based systems

fuzzy logic

neural networks

19

Input internal and external knowledge
Output action

Knowledge representation:

External knowledge identical for all algorithms
Message passing system.
Eg, danger is a constant at the character. Every new object needs to
de�ne when to send message danger and the character will react.

Internal knowledge algorithm dependent

Actions:
Objects notify which actions they are capable of by means of �ags.
For goal oriented behavior, every action has a list of goals that will be
achieved
Alternatively, actions as objects with associated data such as state of
world after action, animations, etc. Actions are then associated to
objects.

20

The Toolchain

AI-related elements of a complete toolchain

Custom-designed level editing tools to be reused in multiple games

Each object in the game world has a set of data associated with it that
controls behavior
Eg, data type �to be avoided� / �to be collected�.

Di�erent characters require di�erent decision making logic and behavior

Allowing level designers to have access to the AI of characters they are
placing without a programmer requires specialist AI design tools.

21

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

22

Decision Trees

Tree made up of connected decision points.

Each choice is made based on the character's knowledge.

At each leaf of the tree an action is attached

Typically binary tree (multibranches are equivalent) but more generally
directed acyclic graph (DAG).

23

Combinations of decisions are obtained by the structure of the tree. Eg:
AND, OR

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row path to leaf

Execution time depends on decisions
Eg, checking if any enemy is visible may involve complex ray casting sight
checks through the level geometry.

24

Random Decision Trees

Some element of random behavior choice adds unpredictability, interest,
and variation

Requires some care if the choice is made at every frame to yield stable
behavior keep track of last decision

Add a time-out information, so the agent changes behavior occasionally.

25

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

26

Finite State Machines

An FSM is an algorithm used for parsing text, eg, tokenize the input code
into symbols that can be interpreted by the compiler.

States: actions or behaviors. Chars are in exactly one of them at any
time.

Transitions: a set of associated conditions, if they are met the char
changes state

Initial state for the �rst frame the state machine is run

27

In a decision tree, the same set of decisions is always used, and any action
can be reached through the tree.

In a state machine, only transitions from the current state are considered, so
not every action can be reached.

28

General State Machines

set of possible states

current state

set of transitions

at each iteration (normally each frame), the state machine's update
function is called.

checks if any transition from the current state is triggered

the �rst transition that is triggered is scheduled to �re
(some actions related to transition are executed)

29

Hierarchical State Machines

Alarm mechanism: something that interrupts normal behavior to
respond to something important.

Representing this in a state machine leads to a doubling in the number
of states.

Instead: each alarm mechanism has its own state machine, along with
the original behavior.

We can add transitions between layers of machines

30

Hierarchical State Machines

In a hierarchical state machine, each state can be a complete state machine
in its own right recursive algorithm

A triggered transition may be: (i) to another state at current level, (ii) to a
state higher up, or (iii) to a lower state

31

Combining DT and SM

Decision trees can be used to implement more complex transitions

32

Outline

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

33

Behavior Trees

synthesis of: Hierarchical State Machines, Scheduling, Planning, and
Action Execution.

state: task composed of sub-trees

tasks are Conditions, Actions, Composites

tasks return true, false, error, need more time

Actions: animation, character movement, change the internal state of
the character, play audio samples, engage the player in dialog,
path�nding.

Conditions are logical conditions

behavior trees are coupled with a graphical user interface (GUI) to edit
the trees.

34

Both Conditions and Actions sit at the leaf nodes of the tree. Branches
are made up of Composite nodes.

Composites: two main types: Selector and Sequence

Both run each of their child behaviors in turn and decide whether to
continue through its children or to stop according to the returned value.

Selector returns immediately with a success when one of
its children succeeds. As long as children are failing, it
keeps on trying. If no children left, returns failure.
(used to choose the �rst of a set of possible actions that
is successful) Eg: a character wanting to reach safety.

Sequence returns immediately with a failure when one of
its children fails. As long as children are succeeding, it
keeps on trying. If no children left, returns success.
(series of tasks that need to be undertaken)

35

Developing Behaviour Trees

get something very simple to work initially

Condition task in a Sequence acts like an IF-statement.
If the Sequence is placed within a Selector, then it acts like an
IF-ELSE-statement

36

37

behaviour trees implement a sort of reactive planning. Selectors allow
the character to try things, and fall back to other behaviors if they fail.
(look ahead only via actions)

depth-�rst search

could be written as state machines or decision trees but more
complicated

38

Non-Deterministic Composite Tasks

In some cases, always trying the same things in the same order can lead
to predictable AIs.

Selectors: eg, if alternative ways to enter the door, no relevant order

Sequences: eg, collect components, no relevant order

Some parts may be strictly ordered, and others can be processed in any
order.� �

class NonDeterministicSelector (Task):

children

def run():

shuffled = random.shuffle(children)

for child in shuffled:

if child.run(): break

return result� �

� �
class NonDeterministicSequence (Task):

children

def run():

shuffled = random.shuffle(children)

for child in shuffled:

if not child.run(): break

return result� �
39

40

Decorators

The decorator pattern is a class that wraps another class, modifying its
behavior (from object-oriented software engineering).

Composite that has one single child task and modi�es its behavior in
some way.

Like �lters that:

limit the number of times a task
can be run (eg, does not insist
with some action)

keep running a task until it fails

negation

41

Resume

1. Other Ideas in Path�nding

2. Decision Making
Decision Trees
State Machine
Behavior Trees

42

	Other Ideas in Pathfinding
	Decision Making
	Decision Trees
	State Machine
	Behavior Trees

