
DM842

Computer Game Programming: AI

Lecture 7
Decision Making

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

2

state machines,

decision trees

behaviour trees

fuzzy logic

rule-based systems

blackboard systems

3

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

4

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

5

Resource Limitation

Limitations on resources: Examples:

animation engine can only play one animation on each part of the
skeleton at any time.

no more than one audio sample per character at a time

Hence we need to check availability of resource:

1. By hard-coding the test in the behavior

2. By creating a Condition task to perform the test and using a Sequence

3. By using a Decorator to guard the resource

6

Decorators solution

Semaphores are a mechanism for ensuring that a limited resource is not
over subscribed.

can cope with resources that aren’t limited to one single user at a time.

before using the resource, a piece of code must ask the semaphore if it
can acquire it.

when the code is done it should notify the semaphore that it can be
released

Most programming languages have libraries for semaphores removing the
need to deal with low-level operating system primitives for locking.

The Decorator returns its failure status code when it cannot acquire the
semaphore. A select task higher up the tree will find a different action

7

Concurrency, Timing

So far we assumed only one task runs at a time.

How do behavior trees work with respect to subsequent frames? how will
it know what to do? Should we restart from the top of the tree every
time?

Concurrency: each behavior tree is running in its own thread. An Action
can take seconds to carry out: the thread just sleeps while it is
happening and wakes again to return True back to whatever task was
above it in the tree. Since it can be highly wasteful to run lots of
threads at the same time even on multi-core machines we may also need
cooperative multitasking and scheduling algorithms.

8

Parallel tasks

Parallel task similar to the Sequence task.

it has a set of child tasks, and runs them until one of them fails, in
which case it return failure.
If all child tasks complete successfully, the Parallel task returns with
success.

children are run simultaneously

when one thread fail all other threads are terminated.

tasks need to be able to receive a termination message and clean up
themselves after termination

9

parallel tasks, application example

10

Using Parallel blocks to make sure that Conditions hold

11

Using Parallel blocks to make sure that Conditions hold
achieve state machines and ability to switch tasks when events occur

but unnatural: events cause a change of action, rather than the lack of
the event allows the lack of a change of action.

state-based behaviors are hard to model!
eg: a character who needs to respond to external events
eg: interrupting a patrol route to go into hiding or to raise an alarm

12

Inter-behavior communication

Interrupter decorators

We want data to pass between behavior trees, but we dont want data into
tasks as parameters to their run method. Else each task needs to know what
arguments its child tasks take and how to find these data.

13

Data

Decouple the data that behaviors need from the tasks themselves.

blackboard: external data store for all the data that the behavior tree
needs. Tasks can then query the blackboard for data.

we can write tasks that are still independent of one another but can
communicate when needed.

we can still handle data privacy by introducing hierarchies of
blackboards. Tasks that are roots of Subtrees create their own
blackboards (similar to scopes in many programming languages).

tasks can communicate by writing and reading from the blackboard
rather than calling methods.

14

The tasks should be written so that, if the blackboard had no target, then
the task fails, and the behavior tree can look for something else to do.

15

Implementation Issues

A. Construction
Levels of abstraction

1. classes abstract concepts about how to achieve some task we saw in
pseudo-code.

2. instances of these classes arranged in a behavior tree.

3. the behavior tree needs is instantiated for a particular character at a
particular time.

Use a cloning operation to instantiate trees for characters.
use behavior tree as an “archetype”; Any time we need an instance of
that behavior tree we take a copy of the archetype and use the copy;
each task has a clone method that makes a copy of itself.

16

B. Reuse behavior trees for multiple characters� �
Enemy Character (goon):
model = ‘‘enemy34.model’’
texture = ‘‘enemy34-urban.tex’’
weapon = pistol-4
behavior = goon-behavior� �

C. use sub-trees multiple times in different contexts

store partial sub-trees in the behavior tree library
17

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

18

Fuzzy Logic

So far decisions based on true and false.

Fuzzy logic includes a range of degrees for decisions.

It is popular in games to represent any kind of uncertainty

19

Fuzzy sets

predicates: sentence about the world are true or false

classical sets: either belongs to the set or not

fuzzy sets: everything can partially belong to the set according to a
numeric value called degree of membership.
sets without sharp boundaries

in fuzzy logic predicate have a value.

degree of membership: [0, .., 255] ⊂ N or [0, 1] ⊂ R

everything can be a member of multiple sets at same time

20

Fuzzification

Fuzzification: turning regular data into degrees of membership

Eg: membership function: a function that maps the input value
(hit points) to a degree of membership, for each fuzzy set.

their values don’t need to add up to 1, although in most cases it is
convenient if they do.

for Boolean values pre-determined membership values for each relevant
set.

21

Defuzzification

Defuzzification: turning a set of membership values into a single output
value.

1. Highest Membership: Eg: 0.7 run + precomputed value:

 0 creep, 0 walk, 1 run ≡ 0.33 creep, 0.33 walk, 0.34 run.
22

2. Blending Based on Membership:
eg: 0.33 creep, 0.33 walk, 0.34 run 7→ (0.33× characteristic creep speed)
+ (0.33× characteristic walk speed) + (0.34× characteristic run speed).

blend of minima: Smallest of Maximum, or Left of Maximum (LM).
blend of the maxima: Largest of Maximum (LM), Right of Maximum.
blend of the average values: Mean of Maximum (MoM).

allows predefined values

often the preferred approach because quick to calculate

23

3. Center of Gravity: crop functions, and calculate center of mass
(requires integration). Cannot be precomputed.

IEEE version doesn’t crop each function before calculating its center of
gravity and so can be precomputed blending

24

Defuzzification to a Boolean Value: cut-off value

25

Fuzzy Logic Reasoning

It might be partially raining (membership of 0.5) and slightly cold
(membership of 0.2).

What is the value of the compound statement such as
“it is raining AND cold”?

Expression Equivalent Fuzzy Equation
AND m(A AND B) = min{mA,mB}
OR m(A OR B) = max{mA,mB}

NOT mNOT (A) = 1−mA

XOR NOT(B) AND A OR m(A XOR B) = max{min{mA, 1−mB}
NOT(A) AND B min{1−mA,mB}}

(corresponds to first order logic when mA = {0, 1} and mB = {0, 1})

It may be reasonable but also not: if T (Funny(Christian)) = 0.4 then
T (Funny(Christian) ∧ ¬(Funny(Christian)) = 0.4

26

Fuzzy Rules

from known membership of certain fuzzy sets
to membership values for other fuzzy sets.

Example: Should brake if close to the corner AND traveling fast

m(should brake) = min{m(close to the corner),m(traveling fast)}

27

Fuzzy Control – Block Format Rules

also used to build industrial controllers that take action based on a set of
inputs

it can be used to determine if transitions in a state machine should fire,
or the activity at the states

based on AND rules

input 1 state AND ... AND input n state THEN out state

Hurt AND In cover AND Empty THEN brake
Healthy AND Exposed AND Overloaded THEN accelerate
...

needs rules for each combination of inputs.
Here 12 rules (2 x 2 x 3).

For each rule calculate degree of membership for output state taking the
minimum degree of membership for input states in that rule (AND).

Output: maximum output from any of the applicable rules.

28

Example

with only two inputs:

then take max per state (0.1;0.6), and defuzzificay or keep numerical value.

Complexity? How can we speed up the computation procedure?

29

Fuzzy Control – Combs

Alternative fuzzy control method based on rules of the form:

a AND b ENTAILS c

a AND b ENTAILS c ≡ (a ENTAILS c) OR (b ENTAILS c) ≡ IF a THEN c
IF b THEN c

IF a1 AND . . . AND an THEN c

IF a1 THEN c
.
.
.
IF an THEN c.

From having rules involving all possible combinations of states to a simple set of
rules with only one state in the IF-clause and one in the THEN-clause

30

but

This is an inconsistent set of rules one rule can be decomposed, more than
one rule cannot

One has to take care of defining only consistent rules
more restrictive but less heavy

31

32

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

33

Markov Processes

dynamic numerical values associated to state to represent level of risk

state vector: each position in the vector corresponds to a single state
and has a value.
Often with random variables values are probability of events and sum up
to one.

values in the state vector change according to the action of a transition
matrix.

π represents the safety of
four sniping positions.
Shooting from position 1
implies the transition M.
Position 1 got less safe,
but the others got more
safe.

π =


1.0
0.5
1.0
1.5

 M =


0.1 0.3 0.3 0.3
0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.8



π′ =


0.1
0.7
1.1
1.5

 =


0.1 0.3 0.3 0.3
0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.8



1.0
0.5
1.0
1.5


34

Markov State Machine

states of the machine are numeric values

state vector is changed by transition matrices at occurrence of events.

transition matrices are triggered by conditions and apply to the whole
machine

default transition occurs if no other transition is triggered.
it may be time dependent. Timer reset by other transitions.

there are no states but only one vector state actions are activated
only by transitions.

35

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

36

Goal Oriented Behavior

So far we have focused on approaches that react on input

here we make the character seem like it has goals or desires (eg, catch
someone, stay alive)

but needed some flexibility in its goal seeking

To look human, characters need to demonstrate their emotional and
physical state by choosing appropriate actions. They should eat when
hungry, sleep when tired, chat to friends when lonely
decision trees would have too many possibilities to consider

better:

goal-oriented behavior: set of actions from which to choose the best one
that meets the character’s internal goals.

37

Goals

A character may have one or more goals, also called motives.

Each goal has a number representing a level of importance aka insistence

the insistence may vary during the game in a pattern typical for the
specific goal

the insistence determines which goal to focus on

38

Actions

actions can be generated centrally, but it is also common for them to be
generated by objects in the world.
eg. empty oven adds an “insert raw food”; enemy adds an “attack me”

actions are pooled in a list of options and rated against the motives of
the char.

People simulating example:
Goal Eat = 4
Goal Sleep = 3
Action Get-Raw-Food (Eat - 3)
Action Get-Snack (Eat - 2)
Action Sleep-In-Bed (Sleep - 4)
Action Sleep-On-Sofa (Sleep - 2)

choose the most pressing goal
(the one with the largest insistence)
and find an action that provides it
with the largest decrease in insistence.

39

Side Effects and Overall Utility
Goal Eat = 4
Goal Bathroom = 3
Action Drink-Soda (Eat - 2; Bathroom + 3)
Action Visit-Bathroom (Bathroom - 4)

discontentment of the character: high insistence leaves the character
more discontent

aim of the character is to reduce its overall discontentment level

add together all the insistence values to give the discontentment of the
character.

better:
scale insistence so that higher values contribute disproportionately high
discontentment values, eg, square

Goal Eat = 4
Goal Bathroom = 3
Action Drink-Soda (Eat - 2; Bathroom + 2) Eat = 2, Bath. = 5: Disc. = 29
Action Visit-Bathroom (Bathroom - 4) Eat = 4, Bath. = 0: Disc. = 16

40

Timing

The time it takes for an action enters also in the decision process.

Actions expose their duration time.

Time split in time to get to location + time to complete

A heuristic such as “the time is proportional to the straight-line distance
from the character to the object”
calculated via path finding

take into account the consequences of the extra time if possible to know.
Example:

Goal Eat = 4 changing at + 4 per hour
Goal Bathroom = 3 changing at + 2 per hour
Action Eat-Snack (Eat - 2) 15 minutes Eat = 2, Bath. = 3.5 Disc. = 16.25
Action Eat-Main-Meal (Eat - 4) 1 hour Eat = 0, Bath. = 5 Disc. = 25
Action Visit-Bathroom (Bathroom - 4) 15 minutes Eat = 5, Bath. = 0 Disc. = 25

41

Planning

actions are situation dependent, it is normal for one action to enable or
disable several others.

action sequences and resource consumptions must be taken into account
Example:

Goal Heal = 4
Goal Kill-Ogre = 3
Action Fireball (Kill-Ogre −2) 3 energy-slots
Action Lesser-Healing (Heal −2) 2 energy-slots
Action Greater-Healing (Heal −4) 3 energy-slots

If char has 5 energy slots, then choosing Greater-Healing would leave
without energy for further actions.

Overall Utility GOA planning: allows characters to plan detailed
sequences of actions that provide overall optimum fulfillment of their
goals.

42

Need a model of the game world: implemented as a list of differences
from previous states

k : maximum depth parameter that indicates how many moves to
look-ahead

exact search: depth first search in the search space of sequences of
actions O(nmk), n num. of goals; m num. of actions

heuristic search: never consider actions that lead to higher discomfort
values

The problem is, we don’t know what we are looking for!

43

GOAP with IDA∗

If we forget about discontentment, choose a single goal on the basis of
its insistence, and want to find the best action sequence that leads to it,
then we can use A∗

best: in total number of actions, in total duration, resource consumption

assume that there is at least one valid route to the goal
allow A∗ to search as deeply as needed

In case it is not possible to reach our goal: consider iterative deepening
A∗ (maximum search depth + the cut-off value)

heuristic function that estimates how far a given world model is from the
goal or h = 0.

avoid considering same set of actions over and over in each depth-first
search (ie, symmetries) transposition table, ie hash value of the world
model (avoid chaining by replacing an entry if the current entry has a
smaller number of actions associated with it)

44

Smelly GOAP

Objects diffuse smells: eg: an oven: “I can provide food” smell,
a bed “I can give you rest” smell

characters follow the smell for the motive it is most concerned with
fulfilling

diffusion takes time to spread and the smell diminishes as one gets away
from source
characters can move in the direction of the greatest concentration of
smell at each frame

if three possible sources of food:
compare: conventional GOAP uses pathfinder to find the easiest source
vs
smelly GOAP approach

45

Motives may require intermediate actions to be fulfilled.

Action-Based Signals: Requires conventional GOAP

Character-Specific Signals: objects only emit signals if they are capable
of being used by the character at that specific time. Signals diffusing
around the game are now dependent on one particular character
problem if large number of motives

46

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

47

Rule-based systems

database containing knowledge + set of if-then rules (+ arbiter)

inefficient and difficult to implement + similar behaviors can almost
always be achieved by decision trees or state machines.

48

Example

Database:� �
Captain’s health is 51
Johnson’s health is 38
Sale’s health is 42
Whisker’s health is 15
Radio is held by

Whisker� �

Condition-Actions rules:� �
IF Whisker’s health < 15 AND Radio is held by Whisker
THEN Sale: pick up the radio� �
The character decides to pick up the radio,
the game decides whether the action succeeds and
the database needs update
Possible also to have actions that manipulate the
database

Wild cards:� �
Anyone’s health < 15 AND Anyone’s health > 45� �

The rule-based system simply checks each of its rules to see if they trigger on
the current database. The first rule that triggers is fired, and the action
associated with the rule is run.

Reasoning carried out by forward chaining
49

Database

Database consists of identifiers.

conditions are matched with identifiers and their values

hierarchical format. A Datum either holds a value or holds a set of
Datum objects.� �

Captain’s-weapon = rifle
Johnson’s-weapon = machine-gun
Captain’s-rifle-ammo = 36
Johnson’s-machine-gun-ammo = 229� �

Example:� �
(
Captain (Weapon (Rifle (Ammo 36) (Clips 2)))

(Health 65)
(Position [21, 46, 92])

)� �� �
(?anyone (Health 0-15))� �

50

Rule Arbitration
An arbiter policy decides which rules fire when more than one rule triggers.

first applicable
rules are provided in a fixed order, and the first rule in the list that triggers
gets to fire.
Rules are suspended until database changes (or particular Datum changes)

last recently used
When a rule fires, it is moved to the end of the list

random rule∗

select at random among those that trigger

more specific conditions:
More specific rules should be preferred over more general rules (count ANDs)

dynamic priority arbitration∗
based on dynamic priorities that returned by each rule on how important its
action might be in the current situation.
Eg: Get health pack When the character’s health is high, the rule may
return a low priority.

51

Unification� �
(?person (health 0-15))
AND
(Radio (held-by ?person))� �

if those are simply wild cards then
we would match:� �
(Johnson (health 38))
(Sale (health 15)) # <=
(Whisker (health 25))
(Radio (held-by Whisker)) # <=� �
which is not what we want... we
want the same person for both
patterns� �
(Johnson (health 38))
(Sale (health 42))
(Whisker (health 15)) # <=
(Radio (held-by Whisker)) # <=� �

In unification, a set of wild cards are matched so that they all refer to the
same thing.� �
(Johnson (health ?value-1))
AND
(Sale (health ?value-2))
AND
?value-1 < ?value-2� � 52

Rete

uses a DAG to represent the matching. represents the patterns for all
rules in a single data structure: the Rete

pattern nodes represents a single pattern in one or more rules

at each node we also store a complete list of all the facts in the database
that match that pattern

join nodes represent the AND operation

each path through the graph represents the complete set of patterns for
one rule

key speed features of the Rete algorithm; it doesn’t duplicate matching
effort.

53

� �
Swap Radio Rule:
IF
(?person-1 (health < 15))
AND
(radio (held-by ?person-1))
AND
(?person-2 (health > 45))

THEN
remove(radio (held-by ?person-1))
add(radio (held-by ?person-2))

Change Backup Rule:
IF
(?person-1 (health < 15))
AND
(?person-2 (health > 45))
AND
(?person-2 (is-covering ?person-1))

THEN
remove(?person-2 (is-covering ?person-1)

)
add(?person-1 (is-covering ?person-2))� �

54

The algorithm:

the database is fed into the top of the network.

the pattern nodes try to find a match in the database: They find all the
facts that match and pass them down to the join nodes. If the facts
contain wild cards, the node will also pass down all the variable bindings.

pattern nodes also keep a record of the matching facts they are given to
allow incremental updating,

join nodes makes sure that both of its inputs have matched and any
variables agree

55

the join node generates its own match list that contains the matching
input facts it receives and a list of variable bindings.

if multiple possible bindings, then it needs to work out all possible
combinations of bindings that may be correct.

56

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

57

BlackBoard Architectures

Mechanism for coordinating the actions of several decision makers.

Each technique may be able to make suggestions as to what to do next,
but the final decision can only be made if they cooperate.

Example:
target selector AI chooses a target, the movement AI moves into a firing
position, and the ballistics AI calculates the firing solution

58

1. Experts look at the board and indicate their interest.

2. The arbiter selects an expert to have control (eg, by highest insistence
value).

3. The expert does some work, possibly modifying the blackboard.

4. The expert voluntarily relinquishes control.

Actions are written on the blackboard and then passed to action execution

An action on the blackboard is only carried out if all relevant experts have
agreed to it (just those who would be capable of finding a reason not to carry
the action out)

59

Outline

1. Decision Making
Behavior Trees
Fuzzy Logic
Markov Systems
Goal-Oriented Behavior
Rule-Based Systems
BlackBoard Architectures

60

	Decision Making
	Behavior Trees
	Fuzzy Logic
	Markov Systems
	Goal-Oriented Behavior
	Rule-Based Systems
	BlackBoard Architectures

