
Transformations



Moving Objects

We need to move our objects in 3D space.

I An object/model (box, car, building, character,. . . ) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

I Maybe in several places in one scene (town with houses and cars).

I Maybe in different places in different scenes/frames (animation).

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3



Moving Objects

We need to move our objects in 3D space.

I An object/model (box, car, building, character,. . . ) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

I Maybe in several places in one scene (town with houses and cars).

I Maybe in different places in different scenes/frames (animation).

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3



Moving Objects

We need to move our objects in 3D space.

I An object/model (box, car, building, character,. . . ) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

I Maybe in several places in one scene (town with houses and cars).

I Maybe in different places in different scenes/frames (animation).

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3



Moving Objects

We need to move our objects in 3D space.

I An object/model (box, car, building, character,. . . ) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

I Maybe in several places in one scene (town with houses and cars).

I Maybe in different places in different scenes/frames (animation).

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3



Moving Objects

We need to move our objects in 3D space.

I An object/model (box, car, building, character,. . . ) is defined in one
position (often centered around origo). Will be needed in another
position in the scene.

I Maybe in several places in one scene (town with houses and cars).

I Maybe in different places in different scenes/frames (animation).

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3



Translation

f

x
y
z

 =

x + dx
y + dy
z + dz





Translation

f

x
y
z

 =

x + dx
y + dy
z + dz





Scaling

f

x
y
z

 =

sx · x
sy · y
sz · z





Scaling

f

x
y
z

 =

sx · x
sy · y
sz · z





Rotation

Euler [1775]: for enhver orientering af en
model findes der en linie l gennem (0,0,0)
og en vinkel φ, s̊aledes at denne orientering
opn̊as ved at rotere φ grader om l .

Rotation around line through origin:

f

x
y
z

 =

?
?
?





Rotation

Euler [1775]: for enhver orientering af en
model findes der en linie l gennem (0,0,0)
og en vinkel φ, s̊aledes at denne orientering
opn̊as ved at rotere φ grader om l .

Rotation around line through origin:

f

x
y
z

 =

?
?
?





Rotation

Euler [1775]: for enhver orientering af en
model findes der en linie l gennem (0,0,0)
og en vinkel φ, s̊aledes at denne orientering
opn̊as ved at rotere φ grader om l .

Rotation around line through origin:

f

x
y
z

 =

?
?
?





Rotation

Simpler case: Rotation around z-axis.

From formula for rotation in 2D:

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z





Rotation

Simpler case: Rotation around z-axis.

From formula for rotation in 2D:

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z





Rotation

Similar: Rotation around x-axis and y -axis.

f

x
y
z

 =

 x
y cosφ− z sinφ
y sinφ+ z cosφ



f

x
y
z

 =

z sinφ+ x cosφ
y

z cosφ− x sinφ





Euler

Theorem (Euler, 1775): any rotation with axis through origo can be
created as three succesive rotations around the three coordinate axes.

The angles of the three coordinate axis rotations are called Euler angles.

Using Euler angles to specify generic rotations is often intuitive, but also
has drawbacks. We will return to that later.



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .
Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z



Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .
Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .

Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .
Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z



Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .
Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Matrices

Move model ⇔ move triangles ⇔ move points (vertices) ⇔ f : R3 → R3

Any matrix induces a (linear) funktion f : R3 → R3:

f

x
y
z

 =

1 2 3
4 5 6
7 8 9

 ·
x
y
z

 =

1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z


Recall: Matrix multiplication is associative: A · (B · C ) = (A · B) · C .
Hence:

A · (B · (C · (E · (F ·

x
y
z

)))) = ((((A · B) · C ) · E ) · F ) ·

x
y
z


Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of transformations (moves).
Calculate the matrix product once.

Question: can all our needed transformations be expressed as matrices?



Transformations as Matrices

I Scaling

f

x
y
z

 =

s1x
s2y
s3z

 =

s1 0 0
0 s2 0
0 0 s3

 ·
x
y
z


I Rotation angle φ around the z-axis

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f

x
y
z

 =

x + x0
y + y0
z + z0

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices

I Scaling

f

x
y
z

 =

s1x
s2y
s3z

 =

s1 0 0
0 s2 0
0 0 s3

 ·
x
y
z



I Rotation angle φ around the z-axis

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f

x
y
z

 =

x + x0
y + y0
z + z0

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices

I Scaling

f

x
y
z

 =

s1x
s2y
s3z

 =

s1 0 0
0 s2 0
0 0 s3

 ·
x
y
z


I Rotation angle φ around the z-axis

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z



I Translation?

f

x
y
z

 =

x + x0
y + y0
z + z0

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices

I Scaling

f

x
y
z

 =

s1x
s2y
s3z

 =

s1 0 0
0 s2 0
0 0 s3

 ·
x
y
z


I Rotation angle φ around the z-axis

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f

x
y
z

 =

x + x0
y + y0
z + z0

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z



No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Transformations as Matrices

I Scaling

f

x
y
z

 =

s1x
s2y
s3z

 =

s1 0 0
0 s2 0
0 0 s3

 ·
x
y
z


I Rotation angle φ around the z-axis

f

x
y
z

 =

x cosφ− y sinφ
x sinφ+ y cosφ

z

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ·
x
y
z


I Translation?

f

x
y
z

 =

x + x0
y + y0
z + z0

 =

? ? ?
? ? ?
? ? ?

 ·
x
y
z


No. For (non-trivial) translation we have f (0, 0, 0) 6= (0, 0, 0), but
all functions induced by matrices have f (0, 0, 0) = (0, 0, 0).



Homogeneous Coordinates

Go to 4D:

x
y
z

→

x
y
z
1



And back: 
x
y
z
w

→
x/w
y/w
z/w





Homogeneous Coordinates

Go to 4D:

x
y
z

→

x
y
z
1


And back: 

x
y
z
w

→
x/w
y/w
z/w





Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:
1 0 0 x0
0 1 0 y0
0 0 1 z0
0 0 0 1

 ·

x
y
z
1

 =


x + x0
y + y0
z + z0

1



All 3x3 matrices are still available (incl. scaling and rotation):
1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 1

 ·

x
y
z
1

 =


1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z

1





Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:
1 0 0 x0
0 1 0 y0
0 0 1 z0
0 0 0 1

 ·

x
y
z
1

 =


x + x0
y + y0
z + z0

1



All 3x3 matrices are still available (incl. scaling and rotation):
1 2 3 0
4 5 6 0
7 8 9 0
0 0 0 1

 ·

x
y
z
1

 =


1x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z

1





Projection
Projection to screen: f : R3 → R2.

Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d





Projection
Projection to screen: f : R3 → R2.

Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d





Projection
Projection to screen: f : R3 → R2.

Prespective projection:

Expressed as 4x4 matrix multiplication (d = −near):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

 ·

x
y
z
1

 =


x
y
z

z/d

→
xd/z
yd/z
d





Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

I glTranslatef(dx,dy,dz)

I glScalef(sx,sy,sz)

I glRotatef(angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies
it on the current matrix.

So last transformaton specified in code is first applied to vertices.

Cf. the math notation f (g(h(x))) (where h is applied first to x , then g ,
then f ).

There is a current matrix for model-view transformations, for projections,
and for textures. Each has a stack.

(Note: legacy code. In shader-based code, similar techniques are used.)



Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

I glTranslatef(dx,dy,dz)

I glScalef(sx,sy,sz)

I glRotatef(angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies
it on the current matrix.

So last transformaton specified in code is first applied to vertices.

Cf. the math notation f (g(h(x))) (where h is applied first to x , then g ,
then f ).

There is a current matrix for model-view transformations, for projections,
and for textures. Each has a stack.

(Note: legacy code. In shader-based code, similar techniques are used.)



Transformations in OpenGL

OpenGL uses 4x4-matrices/homogeneous coordinates internally. Matrices
are normally created by more intuitive commands:

I glTranslatef(dx,dy,dz)

I glScalef(sx,sy,sz)

I glRotatef(angle,ax,ay,az)

Each command generates the corresponding matrix, and right-multiplies
it on the current matrix.

So last transformaton specified in code is first applied to vertices.

Cf. the math notation f (g(h(x))) (where h is applied first to x , then g ,
then f ).

There is a current matrix for model-view transformations, for projections,
and for textures. Each has a stack.

(Note: legacy code. In shader-based code, similar techniques are used.)



Matrix Stack



“The Trick”

Note that rotations are always around origo. To get the effect of a), a
single rotation will not work, but will give the effect of b). Instead, do as
in c) (translate to origo, rotate, translate back).

This kind of thinking is referred to as “the trick” in the textbook. Similar
considerations relate to scaling.


