5 Design Rules for Visualizing Text Variant
Graphs

Stefan J#nicke!, Annette GeBner?, Marco Biichler?, and Gerik Scheuermann'
'Image and Signal Processing Group, Institute for Computer Science,
Leipzig University, Germany
2@6ttingen Centre for Digital Humanities, University of Gottingen, Germany

1 DMotivation

After Schmidt’s article [1] on modelling and representing various versions of text
with so called Variant Graphs was published in 2009, web-based tools were de-
veloped that utilize and adopt the presented model to facilitate the work with
digital editions of text in the browser. CollateX [2] is one of these tools. It com-
putes a static, horizontally aligned, directed acyclic graph with vertices showing
the various text fragments and edges labeled with edition identifiers connecting
subsequent text fragments. The tool Stemmaweb [3] extends the CollateX graph
to allow for user-driven annotation and modification of the graph structure (e.g.,
merging and splitting of vertices). Despite the attached interaction capabilities,
it seems that there is little value put on designing the graphs. The purpose of this
paper is to raise awareness for improving the readability of Text Variant Graphs.
We propose a list of design rules for styling the graph, and its vertices and edges
to facilitate a rapid comprehension of the underlying alignment structure by the
user.

2 Design Rules for Text Variant Graphs

When defining rules for the layout of Text Variant Graphs, we refer to the
visualization of CollateX, as its layout is also used in Stemmaweb, and it can
be seen as an improvement in comparison to the generated graph of the tool
NMerge [4] — provided by Schmidt —, where edges carry all types of information.

When we take a look at a resultant CollateX graph (see Figure 1), it is hard
to find out how often a text fragment occurs over all given editions. Thus, it is
hard to compare, e.g. the numbers of synonyms. The only chance is to count the
edition identifiers at the labels of the incoming edges of the desired vertices. But
we can easily put this information on the vertex layouts, which leads us to Rule
1: Vary vertex label sizes! As Wattenberg proposes for the ”Word Tree” [5],
we suggest weighted vertices also for Text Variant Graphs. The usage of font size
as a metaphor to reflect the number of occurrences of individual text fragments
helps to immediately differentiate between frequent and infrequent branches of
the graph.

W3, W4, WS, W, W7

W3, W4, WS, W6, W7

w1 w2
W saw W2, WS
w2 he light ws
thatit
md W1, W3, Wi, We, W

Fig. 1. Fourth Bible verse in 7 different editions: Visualization computed with CollateX
tool

looking—on

Lanadgos sa“jhe_lightmthat_ntmjgmdmgm-__
seeth and saw! is]

N MG
divided the—Ilightg~from=gth darkness:
U R W o Bt
a—division—f

Fig. 2. Fourth Bible verse in 7 different editions: Our visualization

It seems to be obvious to draw the edges of a directed acyclic graph in the
shape of arrows. But for what reason, when we know that we read a text with
a dedicated writing direction? Then, most probably, the user is supposed to
read the graph in the same direction, and it is counterintuitive to move the eyes
backwards when reading (in Figure 1, we find an edge from ”saw” (right-top) to
"the light” (bottom-left) — we call this a backward edge). In graph theory, the
common style for a directed acyclic graph is a so called layered graph drawing [6]
with all edges pointing in the same direction. Thus, we define Rule 2: Abolish
backward edges! When doing so, we can reduce the cognitive load of the
visualization by drawing undirected edges instead of arrows.

The labeling of edges with edition identifiers as it is done in CollateX leads
to two problems. Firstly, the additional text labels interfere with the vertices’
texts. Thus, the reader has to visually separate vertex labels (text fragments)
from edge labels (identifiers). Secondly, if lots of editions pass an edge or long
edition identifiers are used, the corresponding edge labels become very large.
As a consequence, adjacent vertices drift apart and the reader quickly loses the
context of a text fragment. Therefore, follows our Rule 3: Do not label edges!
As an alternative, we suggest drawing an edge for each edition in a different color.
However, as the human ability to distinguish colors is limited, it only works well
for a small number (<10) of editions. But, with varying stroke styles for edges
(e.g., line, dashed line, dotted line) we are again able to increase this number. In

any case, a legend is required to map the given styles (or in the CollateX case,
the identifiers) to its corresponding edition name.

When analyzing and comparing text editions to each other, the user is often
interested in those editions, that deviate from the ”general case”. Within the
Stemmaweb tool [7], edges, that are passed by most editions, are labeled with
"majority”, thus, the labels are bundled. When following Rule 3, we receive
multiple lines instead of multiple labels, hence, Rule 4: Bundle major edges!
We highlight both resultant edge types — bundled and unbundled edges — in a
different way. Unbundled edges receive saturated colors in visually attracting
hues, whereas bundled edges are colored in a plain gray, but drawn with slightly
thicker strokes. Thus, the deviations from the general case can be detected easily.
When following Rules 3 and 4, we are able to reduce the number of edges to
be drawn — and therefore, the cognitive load of our approach — to a passable
minimum.

Last but not least, the main problem we identified when reading the horizon-
tal aligned Text Variant Graphs was the required horizontal scrolling. Especially,
when the source texts are long, the user quickly loses the context and it is hard
to keep track of how individual editions disseminate in the graph. Moreover, a
lot of space is wasted since the height of the graph is rather small compared to
the height of the screen. The outcome of a survey within the TAdER Project [8]
to avoid horizontal scrolling when reading texts in the browser underpins our
hypothesis that the user is accustomed to scroll vertically. Thus, here comes our
final Rule 5: Insert line breaks! It may sound tricky to cut the graph into
pieces, and thereby, keeping it easily readable. But, why shouldn’t we adopt the
behavior of a text flowing in a book (with line breaks) for Text Variant Graphs?
When following Rule 3, we receive different colored edges (or edge bundles) at
the end of each line, so that all paths are visually seizable at the beginning of
the next line. This approach supports the user in following individual editions
even for large graphs, and the user also receives more context on the screen for
a specific position in the graph.

Figure 7?7 juxtaposes the resultant Text Variant Graphs for the fourth Bible
verse with CollateX and our visualization that implements the listed design rules
above.

3 Following the Rules: 7 English Translations of the Bible

We are working with seven english translations of the Bible in our project [9],
which turned out to be a very good use-case for the presented visualization
approach, not only because the Bible is a very influential and well-known text.
Another reason is, that these translations are all derivatives of the same Hebrew
and Greek original, often trying hard to preserve the exact wording, and refer
to an existing and well structured text, divided into canonical books and verses.

Figure 3 shows a screenshot of the first five Bible verses. After tokenization,
normalization and alignment procedures, we layout the resultant directed acyclic
graph by following the rules proposed in the previous section. For the seven

Genesis v 1 W 1l & » Go to verse!

Main Branch: [Asv [MQree MQov Zxv Ewr Mwee Evir W Majority

Genesis 1:1 Genesis 1:5

Of e g OCls e preparing

1 1 otinj-thetginnﬁgod reatedjthe*'-heavensﬁand—rhe—earth—-

at first rmde ;he:wen—‘
‘without form without: form
2 vﬁthe—earth wasT—Twasre—-and;void——%andﬁdarkness was
now hﬁth—EKiStEdJ \fnrmlassLEmpty_J Emptv—JL {b
upnn thetface of —the—deep=s=—and :]-spm of —gody———moved
gods

d1rk on surface: _flutteringjcn
—J moving

-Wast
hovering==== over
thetface of—the—waters—a

upon===

surface

3 mgodtsaldjlet£there—bellightUandZthere—wasllightU
be: is:

saith:

looking on

4 -mgod_saw—the—light that:it:was:goodmgod

e .5
r'livigec the:lighttfronjthe_darknessz
separateth Lherween—j and dark

division

calleth m—ro hath:
‘f igochalled the—l1ghr—day—andUrhTdarkness—hbf _1 alled
naming dark

nightmtherelwasleveni ng=——an Cl"‘-there-LwaslmOI'niﬂg\L L=
the the Were = [hf:—firs,[—r

made a

R ——

Fig. 3. Screenshot of the Bible use case. In Genesis 1:4, all paths containing the token
”divided” are highlighted.

editions, we chose the following colors of the 12-color palette for categorial usage
suggested by Ware [10] to facilitate maximal visual differentiation by the user:
red, blue, green, yellow, orange, brown, and purple. To support answering various
research questions, the user is able to modify the visualization. Firstly, when the
user hovers a vertex all individual edges of the corresponding editions are drawn
in the dedicated colors. This mean of interaction helps to highlight the paths
containing the dedicated token and to clarify those editions forming majority
edges. Secondly, unimportant editions can be removed from the graph. Thirdly,
the user is able to select one of the editions as a main branch, so that the
corresponding vertices are drawn on the same horizontal level — variations to the
other editions can be considered easily.

During the development phase, the humanities scholars of our project steadily
evaluated our design, so that the result remains intuitive even for the inexperi-
enced, maybe sceptical user. We strongly recommend such an iterative process
when developing visualizations for humanities applications as it turned out to
be very successful. In comparison to a plain graph layout, the presented design
for the Text Variant Graph and the project page reminds the user, that it is a
book to be read, not just some string of letters — which was a major concern of
the humanities scholars.

Our presented approach is still applicable for examples where whole blocks of
text have different orders among the various editions, but matching text blocks
may strongly drift apart. In the future, we direct our attention on developing
algorithms that visually align such structures more properly.

References

1. Desmond Schmidt and Robert Colomb. A data structure for representing multi-
version texts online. International Journal of Human-Computer Studies, 67(6):497
— 514, 2009.

2. Ronald H. Dekker and Gregor Middell. Computer-Supported Collation with Col-
lateX: Managing Textual Variance in an Environment with Varying Requirements.
Supporting Digital Humanities 2011, University of Copenhagen, Denmark, 17-18
November 2011.

3. Tara L. Andrews and Caroline Mac. Beyond the tree of texts: Building an empirical
model of scribal variation through graph analysis of texts and stemmata. Literary
and Linguistic Computing, 2013.

4. Multiversiondocs: Merge, edit and compare N versions in one document. http:
//code.google.com/p/multiversiondocs/ (Retrieved 2013-10-30).

5. Martin Wattenberg and Fernanda B. Viégas. The Word Tree, an Interactive Vi-
sual Concordance. IEEFE Transactions on Visualization and Computer Graphics,
14(6):1221-1228, November 2008.

6. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual Under-
standing of Hierarchical System Structures. Systems, Man and Cybernetics, IEEE
Transactions on, 11(2):109-125, Feb 1981.

7. Stemmaweb — a collection of tools for analysis of collated texts. http://byzantini.
st/stemmaweb/ (Retrieved 2013-10-30).

10.

TAdER - Text Adaptability is Essential for Reading. http://www.tader.info/
scrolling.html (Retrieved 2013-10-30).

Holy Bible — Verses in Various English Translations. http://informatik.
uni-leipzig.de/HolyBible (2013).

Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann,
3rd edition, 2004.

