
Improving the Layout for Text Variant Graphs

Stefan Jänicke1, Marco Büchler2, Gerik Scheuermann1

1 Image and Signal Processing Group, Institute for Computer Science, Leipzig University, Leipzig
2 Goettingen Centre for Digital Humanities, University of Goettingen, Goettingen
{stjaenicke,scheuermann}@informatik.uni-leipzig.de, mbuechler@gcdh.de

Abstract
Sentence Alignment Flows are visualizations for Text Variant Graphs that show the variations between different editions of texts.
Although the resultant graph layouts are a substantial improvement to standard tools that are used in the corresponding Digital
Humanities research field, the visualization is often cluttered due to large amounts of edge crossings and the occlusion of edges and
vertices. In this paper, we present methods for the layering of vertices, the bundling of edges and the removal of overlaps between edges
and vertices to reduce clutter, and therefore, to improve the readability for such graphs. Finally, we present the results of our survey with
participants from the humanities and computer science, who had the task to compare the readability of Sentence Alignment Flows to the
layouts generated by our improved method.

Keywords: Sentence Alignment Flows, Text Variant Graphs, Graph Layout, Directed Acyclic Graphs

1. Introduction
One of the substantial tasks in the field of textual criticism
is called collation, which is the cautious comparison of var-
ious editions of one and the same text. The traditional ap-
proach of a humanities scholar is to put the texts of sev-
eral editions next to each other and mark the differences
among the textual entities (e.g., sentences, sections, chap-
ters). Since this is an extremely laborious approach many
Digital Humanities projects investigate tools that support
the humanities scholars with computational methods.
To solve the collation task automatically, a great variety of
algorithms was developed that compute the alignment be-
tween different text editions. CollateX (Dekker and Mid-
dell, 2011) is a standard tool used in the Digital Human-
ities that implements such alignment algorithms as well
as provides a static visualization for Text Variant Graphs.
The interactive interface Stemmaweb (Andrews and Macé,
2013) extends the CollateX graph to allow for user-driven
annotation and modification of the graph structure. Both
tools only provide plain horizontal layouts for Text Vari-
ant Graphs without highlighting its essential features. This
makes it hard to visually follow subsequent tokens.
A recently published article proposes so called Sentence
Alignment Flows (Jänicke et al., 2014) as a visualization
solution for Text Variant Graphs. In the spirit of Watten-
berg’s Word Tree (Wattenberg and Viégas, 2008), it gen-
erates a proper overview that allows to follow how the
words of an individual text edition disseminate in the graph.
Therefore, it utilizes font size to highlight the number of oc-
currences of individual tokens and it uses horizontal links
and vertical aligned splines to connect subsequent tokens.
Figure 1 shows a Sentence Alignment Flow example. How-
ever, as discussed in Section 2.3. the layout algorithm is de-
signed the way that occlusions of distinct splines and over-
laps of splines and vertices often occur. Especially, when
working with text editions that comprise lots of variation,
these artifacts hamper the readability of the resultant Text
Variant Graph layouts.
The purpose of this paper is to improve the readability

for Text Variant Graphs based upon Sentence Alignment
Flows. In particular, we provide the following methods to
reduce visual clutter within the resultant graph layout:

• Vertex Layering by Edition: The goal is to place the
subpaths of the Text Variant Graph that are passed by
the same edition closely to each other to reduce the
overall height of vertical connections to be drawn.

• Improved Edge Routing: This method aims to sim-
plify the visual separation between different paths by
bundling links with the same source or destination and
removing occlusions of similarly routed links.

• Overlap Removal: In contrast to Sentence Alignment
Flows, we suggest removing all occlusions between
edges and vertices to avoid misinterpretations when
observing the graph.

To obtain an objective evaluation, we finally conducted a
survey with 53 participants. Their task was to compare the
readability of the graph layouts computed with the Sentence
Alignment Flow and our improved layout for Text Variant
Graphs.

2. Related Work
For the purpose of modelling the differences and similar-
ities between various editions of the same text, Schmidt
et. al (Schmidt and Colomb, 2009) proposed so called
Text Variant Graphs, which are directed acyclic graphs that
emphasize such overlapping textual structures. Lots of re-
search has been done in developing algorithms for directed

Figure 1: Sentence Alignment Flow for seven various En-
glish translations of the first Bible verse

acyclic graphs. In this section, we want to discuss tradi-
tional methods of the Graph Drawing community and the
required steps in adopting some of the presented ideas for
Text Variant Graphs. Furthermore, we want to consider
methods developed for the dedicated research field in the
Digital Humanities. Finally, we discuss Sentence Align-
ment Flows: a recently published layout algorithm for Text
Variant Graphs.

2.1. Layout Algorithms for Directed Acyclic
Graphs

Layered graph drawing as introduced by Sugiyama is
the common drawing style used for directed acyclic
graphs (Sugiyama et al., 1981). Typically, the vertices are
placed on equally spaced horizontal (or vertical) layers and
the edges are routed downwards (or rightwards) between
the layers. Sugiyama’s approach as well as many of its vari-
ations (Gansner et al., 1993; Cole, 2001; Utech et al., 1998;
Eiglsperger et al., 2004) need to be adapted for the purpose
of visualizing Text Variant Graphs, because only single ver-
tices of one path are usually placed on one layer. This com-
plicates the required vertical alignment of synonyms con-
sistent of various amounts of tokens (e.g., “swarmed” and
“brought forth abundantly” in Genesis 1:21). Additionally,
the width of the vertices of a Text Variant Graph vary, so
that a placing on vertical layers of equal width would fur-
ther increase the distance between adjacent tokens.
To remove the occuring clutter for layered graph draw-
ings with lots of edges, some approaches bundle edges to
improve the readability of the resultant layouts (Eppstein
et al., 2007; Pupyrev et al., 2011). Sentence Alignment
Flows as well as its extension presented in this paper utilize
this idea to compute well readable layouts for Text Variant
Graphs.

2.2. Text Variant Graph Visualizations
The comparison of textual editions is a common task in tex-
tual criticism. Various research projects in the Digital Hu-
manities focus on providing digitized editions of text to the
collaborating humanities scholars.
Büchler proposed a horizontal alignment (Büchler et al.,
2010) for the visualization of a Text Variant Graph for two
similar text passages. One edition is used as a main branch
and the variations to the second edition are highlighted in
form of sub-branches in a certain color.
Several web-based tools were developed that also utilize the
Text Variant Graph model to support the work with multiple
digital text editions in the web browser (Dekker and Mid-
dell, 2011; Andrews and Macé, 2013). These tools compute
horizontally aligned directed acyclic graphs with a plain de-
sign. The vertices are labeled with equally sized text to-
kens, which makes it hard to visually compare the number
of occurrences of tokens. Directed edges labeled with the
corresponding edition identifiers connect subsequent ver-
tices. The layout often creates a very wide graph that con-
tains edges routed opposed to the reading direction. These
circumstances deteriorate the readability of the graph and
make it hard for the observer to follow the route of a cer-
tain edition.

2.3. Sentence Alignment Flows
Within a Digital Humanities project, Sentence Align-
ment Flows were developed for visualizing Text Variant
Graphs (Jänicke et al., 2014). In collaboration with human-
ities scholars experienced in the field of textual criticism,
design principles were elaborated to facilitate the readabil-
ity of the generated graphs, e.g., using vertex labels of dif-
ferent size to reflect the number of occurrences for a to-
ken, or horizontal layering of the vertices to improve the
coherance of individual editions in the layout and the ver-
tical alignment of synonyms. However, Sentence Align-
ment Flows produce well readable layouts for Text Variant
Graphs if the extent of variation between the texts is lim-
ited. For examples with more complex variation structures,
the resultant graph layouts are often cluttered due to the
following incidents that are not treated by the algorithm:

Edge splines crossing text vertices: If connections are
drawn between vertices of layers that are not adjacent to
each other, occlusions between splines and vertices of the
intermediate horizontal layers are possible (e.g. the edge
between “helper” and “as” crosses the vertex “helpmate”
in Figure 2). An improved vertex placement as described
in Section 3.1. reduces the amount and length of vertical
links, and therefore, the number of potential edge/vertex
overlaps. A further strategy (Section 3.3.) is attached to
remove occuring overlaps.

Figure 2: Edge/vertex overlaps in Genesis 2:18

Occlusion of similarly routed edges: An edge {t1, t2}
routed between text vertices of different layers consists of
a spline starting from t1, a horizontal line between the lay-
ers, and a spline ending at t2. Thereby, it often happens
that multiple horizontal lines occlude each other, so that it
is hard to determine the destination of an edge. As shown
in Figure 3, it is not clear if the vertex labeled “down” is
linked to “as”, to “like” or to both vertices. The method
described in Section 3.2. solves this problem.

Figure 3: Edge overlaps in John 1:32

Occlusion of multiple splines: For strongly varying text
passages lots of splines need to be drawn in the same area
(see the token “adam” in Figure 4). This produces a large
number of edge crossings and makes it difficult to identify
the individual paths easily. The edge bundling approach
proposed in Section 3.2. removes the crossings of a ver-
tices’ incoming and outgoing edges.

Figure 4: Edge spline occlusions in Genesis 2:20

3. Improved Text Variant Graph Layouts
Text Variant Graphs are constructed through various text
editions transformed into paths, so that the graph basically
contains multiple edges between the same vertices (like in
Figure 5). Since these are routed side by side, it is sufficient
to treat the readability issues mentioned in Section 2.3. for
the “general case” with aggregate edges to be drawn.

3.1. Vertex Layering by Edition
When layers are assigned to vertices in the Sentence Align-
ment Flow algorithm, initially, the corresponding vertices
for a dedicated edition e0 are placed on the center layer
0. Iteratively, the shortest paths {t1, ..., tn} ∈ G are de-
termined with assigned layers for t1 and tn and missing
layers for the vertices {t2, ..., tn−1}. The result is that the
subpaths of an edition are treated at unpredictable iteration
steps of the algorithm. Thus, the layers for consecutive sub-
paths of an edition may drift apart, so that some connections
need to cross the intermediate layers. This can lead to fre-
quent layer changes for individual editions, additional edge
crossings and overlaps between vertices and edges.
We modify this process to place the subpaths of an edition
as close as possible to each other by still achieving com-
pactness of the graph. We also start with putting the vertices
of e0 on layer 0. Afterwards, we iteratively determine the
next edition ei with most vertices already assigned to lay-
ers. If multiple editions reach the same score, we choose
the edition with vertices assigned to layers with lower ab-
solute indices. For all subpaths of ei to be inserted, we sub-
sequently calculate the corresponding layer using the Sen-
tence Alignment Flow method. This slightly modified ap-
proach treats the subpaths of ei in a row, and thereby, keeps
the extent of layer changes for ei at a low level. An exam-
ple can be seen in Figure 5. It uses the edition drawn in red
color as e0. The Sentence Alignment Flow algorithm (Fig-
ure 5 (a)) inserts the subpaths by increasing length in the or-
der “so to jehova”, “to yahweh your” and “to the lord your”.
Our proposed method (Figure 5 (b)) inserts the subpaths by
edition in the order “so to jehova” (brown edition), “to the
lord your” (green), and finally “to yahweh your” (orange).
This reduces the total of layer changes among all editions.

3.2. Improved Edge Routing
To avoid cases such as shown in Figure 3, we insert a path
layer pi above each vertex layer li that reserves enough
space to route horizontal links without overlaps. Further-
more, we remove overlaps of distinct vertical links. Be-
tween parallel routed edges, we require a minimum, config-
urable gap. The following four steps describe our improved
edge routing procedure.

(a)

(b)

Figure 5: Vertex layering for part of Deuteronomy 12:4

3.2.1. Initialization of different edge types
We initialize the type for each edge e = {tl, tr} dependent
on the corresponding layers ll and lr of the connected ver-
tices tl and tr. We separate three different edge types (see
Figure 6):

type 0: If ll = lr and there is no other vertex placed on ll
between tl and tr, e is drawn as a straight horizontal line.

type 1: If ll = lr and there are vertices placed on ll between
tl and tr, a path is routed above ll, consistent of an upward
vertical link vl, a horizontal link h on path layer pl and a
downward vertical link vr.

type 2: If ll 6= lr, a path consistent of an upward (or down-
ward) vertical link vl, a horizontal link h on path layer pl
(or pl+1) and an upward (or downward) vertical link vr. We
always put the horizontal link on the corresponding path
layer with the higher absolute index.

type 0

type 1

type 2

h

h

tl

tl

tr

tr

vr

vl

vrvl

l i

l i

l i-1

l i

p
i

p
i

l i+1

p
i+1 h

tr

vr

vl

tl tr

Figure 6: Different edge types

To smooth the graph layout, we connect each vertical link
to its adjacent vertex and horizontal link using bends with
radius rb. Since four bends are required to draw edges of
type 1 and 2, all adjacent vertices receive a minimum gap
of 4 · rb.

3.2.2. Bundling horizontal links
After all edges are initialized, we receive a list of horizontal
links h1, . . . , hn with hi = tltr for each path layer p. We
begin with constructing bundles B = b1, . . . , bn of hori-
zontal links for all edges with the same left-hand vertex tl
and for all edges with the same right-hand vertex tr. Thus,
all horizontal links occur twice over all bundles. After-
wards, we sort B by decreasing number of horizontal links
within the bundles. Iteratively, we insert the first bundle
b1 of B onto p. If b1 overlaps with other already inserted
bundles, we merge all these bundles into an overlap group.
Then, we remove the duplicates of the horizontal links of
b1 from the remaining bundles of B and sort B again by
decreasing number of horizontal links.
After placing all bundles onto p, we order and adjust
the bundles of each overlap group parallel to each other.
Thereby, we try to keep the number of edge crossings as
minimal as possible. We perform this step iteratively by
decreasing number of bundles in the overlap groups. Once
a bundle that is part of multiple overlap groups is adjusted,
it remains fixed for further ordering iterations. An example
ordering is shown in Figure 7(a).

v2

v3

v1 v1
v2

v3
h1 h2

h3

h3

h1

h2
(a) (b)

Figure 7: Ordering links of overlap groups

3.2.3. Bundling vertical links
For each vertex that is linked to neighbors with edges
of type 1 and 2, we create a total of four bundles for
its upward/downward incoming vertical links and its up-
ward/downward outgoing vertical links. Since bundles of
distinct vertices can be too close or even overlap each other,
we perform the following two steps to keep the graph lay-
out uncluttered. Firstly, we insert the bundles stepwise by
increasing x-value into the graph layout. If a minimum gap
to bundles that are already inserted is not given, we merge
these bundles into overlap groups. Secondly, after all bun-
dles are inserted, we order the vertical links of each overlap
group, so that the number of edge crossings is minimal as
it is shown in Figure 7(b). Finally, we test whether the re-
quired gaps between each vertical link v of the group and
its subsequent glyph (right-hand vertical link vr or vertex
tr) is still guaranteed. If this is not the case, we slightly
shift all subsequent edges and vertices of v to the right so
that the requirement is fulfilled.

3.2.4. Converting edges with type 2
To improve the readbility of the graph layout, we try to sim-
plify edges of type 2 by removing one vertical link, and
thereby, two of the four bends. Figure 8 illustrates an exam-
ple of our approach. The upper connection {vl1, h1, vr1}
between tl and tr1 is replaced by {vnew, hnew}, because

Figure 8: Converting edge type 2

neither vnew nor hnew cause an overlap with a vertex of
the layout. Since this is the case for the lower connection
{vl2, h2, vr2} between tl and tr2, it cannot be replaced.
There are two possibilities for each edge conversion, either
the left hand vertical connection vl gets removed and the
right hand vertical connection vr gets replaced by vnew or
vice versa. If no overlaps are produced in both cases and
|ll| > |lr|, we remove vl and replace vr. Otherwise, we
remove vr and replace vl.

3.3. Removing overlaps between vertices and
edges

Although the graph is designed the way the observer fol-
lows the spreading of an edition in horizontal direction, po-
tential overlaps between a vertical link v that crosses an
intermediate vertex layer lm and a vertex t placed on lm
may hamper the readability of the graph. In such a case, we
check if t can be moved horizontally without overlapping
bends or other vertices by keeping the minimal required
gaps to its neighbors.
An example can be seen in Figure 9(a). A leftward move-

t

v

t

v

t

v

t

v

(a)

(b)

Figure 9: Overlap removal examples

ment of t is preferred, since the final position would be
closer to its current position. Because this attempt fails,
we move t to the right. If a horizontal movement of t is not
possible (see Figure 9(b)), we move t and its subsequent
edges and vertices, so that the overlap gets removed.

3.4. Improvement Validation
The benefit of the improved vertex layering method can be
seen for the Genesis 2:18 example. In comparison to the
Sentence Alignment Flow layout in Figure 2, the vertical
links in the modified layout (Figure 10) are shorter and
rarely cross intermediate vertex layers. Furthermore, the
overlap removal procedure moves the vertex labeled “help-
mate” leftwards, so that the overlap with the connection be-
tween “helper” and “as” gets removed.

Figure 10: Removed edge/vertex overlaps in Genesis 2:18

Figure 11 shows the same example as Figure 3 with our new
edge routing technique. The horizontal adjustment step un-
veils that the token “down” is connected to “as”.

Figure 11: Removed edge overlaps in John 1:32

Finally, the advantage of bundling vertical links is visible in
Figure 12. Compared to the splines drawn in Figure 4, the
large number of crossings for the incoming and outgoing
edges for the vertex “adam” is reduced.

Figure 12: Removed edge spline occlusions in Genesis
2:20

4. Evaluation
To evaluate the benefit of the improvements for Text Vari-
ant Graph layouts described in Section 3., we conducted a
survey with 53 participants. We decided against a mathe-
matical comparison of both methods, because the resultant
visualization for Text Variant Graphs needs to be under-
stood and analyzed by humanities scholars working in tex-
tual criticism. Thus, our attitude was to let the target group
decide whether our modifications are expedient or not. We
further wanted to confirm our own expectations by com-
puter scientists that are used to work with graphs. Depen-

dent on the corresponding research fields, we could devide
the participants roughly into three groups:

• 14 humanities scholars, experienced in the field of
textual criticism and partially involved in Digital Hu-
manities projects

• 16 computer scientists, working in Digital Humani-
ties projects and partially dealing with issues in textual
criticism

• 23 computer scientists, most of them focused on re-
search in visualization (partially experienced in graph
visualization) and natural language processing

Within our project, we provide an interface to the human-
ities scholars that highlights the multiple colored edges on
interaction (like in Figure 5), which further supports the un-
derstanding of the underlying structure. But for the purpose
of discussing the graph readability issues, we confined the
survey to the “general” case with aggregate edges.
The survey had a plain structure. The participants had to
compare the readability of both layouts generated for six
different examples. Each of the examples was an align-
ment of the same verse from seven various English trans-
lations of the Bible. The participants were asked to as-
sess, whether they prefer Layout A (the resultant Sentence
Alignment Flow), Layout B (our improved method), or if
the readability of both layouts is similar. Furthermore, the
reasons for the taken decisions were requested. Most of
the participants had never seen any of both visualizations
before the survey, so we could expect unbiased results.
We selected three of the Bible verses that contain the differ-
ent structures with varying complexity that occur for typi-
cal Text Variant Graph use cases. Another three examples
were randomly chosen from the remaining 28,629 verses.
We wanted to assure that Text Variant Graphs benefit from
our modifications generally, and not only a minor list of ex-
amples. The resultant layouts for the three selected verses
are shown in Figure 14.
The results for all participants and the three different groups
are juxtaposed in Figure 13. From a total of 318 com-
parisons, the Sentence Alignment Flow was preferred 36
times (11.3%), our improved layout 232 times (73%), and
49 times both layouts readability was assessed similarly
(15.7%). When we take a look at the various groups, the

Figure 13: Preferred Layouts by participant group (in %)

Fi
gu

re
14

:T
he

th
re

e
se

le
ct

ed
ve

rs
es

us
ed

w
ith

in
th

e
su

rv
ey

.T
he

up
pe

rl
ay

ou
ti

s
th

e
re

su
lt

of
th

e
Se

nt
en

ce
A

lig
nm

en
tF

lo
w

,t
he

bo
tto

m
la

yo
ut

is
th

e
re

su
lt

of
ou

rm
et

ho
d.

Figure 15: Preferred Layouts by verses (in %)

preferences vary only slightly. Especially satisfying was
the evaluation of the dedicated target group from the hu-
manities. In 79.8% of all cases (67 of the 84 presented
layouts) the improved method of this paper was preferred
over the Sentence Alignment Flow visualization.
Figure 15 shows the results for the individual examples.
Our improved method turned out to be the participants’
preference for the three selected verses. The reasons given
for the decisions were congruent to the purpose of our mod-
ifications. Enclosed, some of the participants’ comments:

• “Layout A seems to have more crossings and even
lines through words which is disturbing.”

• “Layout B has less clutter, no overlaps and crossings.”

• “The line crossings in Layout B are orthogonal and
fewer.”

Particularly, one of the discussed issues of the Sentence
Alignment Flow – the edge spline occlusions in Genesis
2:20 starting from “adam” – was often perceived as prob-
lematic, e.g.:

• “In case of Layout A, the slightly vertical paths are
harder to follow (e.g. at adam there is confusion of
paths).”

• “At some point (e.g. after ”adam”), it is easier to fol-
low the text in example B.”

For nearly one fourth (23%) of the randomly chosen verses
the readability of both layouts was assessed as similar. Fig-
ure 17 shows one of the typical examples for these cases.
Both layouts show less variation and clearly visible paths
and the overall number of edge crossings is apparently re-
duced compared to the selected examples with a higher
complexity. The Sentence Alignment Flow was favored in
14.5% of the cases over our new method. Often, the verses
were short and properly visualized and with few or without
edge crossings. An example is given in Figure 16. The par-
ticipants preferring Sentence Alignment Flows argued like:

• “Compact Layout A for small sentence; easier to fol-
low in one view.”

• “Less spacing for Layout A.”

Figure 16: Sentence Alignment Flow preferred for
Deuteronomy 6:4

• “... and Layout A is shorter.”

Due to the various edge types and the required spacing be-
tween adjacent vertices, the width of the layouts computed
by our method is constantly larger compared to the Sen-
tence Alignment Flows. Although some participants favor-
ing our method mentioned the too small spacings between
subsequent vertices in Sentence Alignment Flows, the re-
sultant compactness seems to improve the readability for
some of the participants.
But our method was still mostly preferred (62%) also for
the random verses. The slightly decreased percentage is at-
tributable to the averagely lesser complexity of the random
verses. Finally, some of the participants’ comments justify-
ing their decisions when favoring our improved method:

• “The lines are easier to follow – less twisty.”

• “The circular edge bending looks better structured
than the stretched/elliptical, which removes orthogo-
nal feeling.”

• “The word spacing and line curvature of the B layouts
made them more readable to me.”

• “I just like the angular style!”

• “Layout B seems to have less edge crossings and is
more balanced (same amount of text above and below
center line).”

• “Though the sentences in B are a lot longer/wider ...
they are a lot clearer as there are no lines in the way of
words while you are trying to read.”

In conclusion, we determined that our method was con-
stantly preferred when the corresponding examples con-
tained lots of variation, and therefore, a larger amount of
edge crossings. This fact confirms the benefit of the im-
provements proposed in this paper.

5. Conclusion
In this paper, we presented three methods to improve the
readability for Text Variant Graphs compared to Sentence
Alignment Flows that often contain clutter in form of edge
crossings and occlusions between splines and text vertices.
The first method improves the layering of the vertices that
are inserted onto the layers in dependency to the corre-
sponding editions, so that the resultant layering keeps ver-
tices of one edition close to each other. This procedure
shortens vertical links, and thereby, minimizes the amount
of edge crossings and potential overlaps with other vertices.

Figure 17: Similar readability of layouts for Colossians 4:8

As a second method, we proposed a four-step-approach to
improve the routing of the edges, so that each path of the
layout can be traced easily by the observer. Therefore, we
separate different edge types dependent on the layers of
the corresponding vertices, bundle links that share the same
source or destination and route groups of overlapping links
parallel to each other to avoid occlusions.
Finally, we provide a solution to remove all overlaps be-
tween vertical links and vertices. Either the corresponding
vertex can be moved horizontally, or the vertex and all its
successors are moved rightwards to avoid overlaps.
To evaluate our method, we conducted a survey with re-
searchers from humanities and computer science. Their
task was to compare the layouts for Text Variant Graphs
produced by Sentence Alignment Flows and our method.
For several examples, the participants could choose the pre-
ferred layout. Independent from the background, the ma-
jority judged the layout generated by our method as bet-
ter readable, especially for examples with long texts, more
complex variations and many edge crossings. For examples
with minor variations and lesser edge crossings the read-
ability of both layouts was often assessed similarly. In some
cases, also the Sentence Alignment Flow was preferred.
One issue for the kind of visualization presented in this pa-
per remains. When several editions vary the way that whole
blocks of text are put in a different order, the width of the
resultant graph increases rapidly, since only small parts of
the texts can be aligned in form of a directed acyclic graph.
To keep the graph layouts still compact and readable when
highlighting such structures is one of the great challenges
for the future developement of visualizations for Text Vari-
ant Graphs.

6. Acknowledgements
The authors like to thank Christian Heine for fruitful sug-
gestions, Muhammad Faisal Cheema and Thomas Reimann
for proof reading and the 53 participants of the survey for
their time. This research was funded by the German Fed-
eral Ministry of Education and Research within the project
eTRACES (project number: 01UA1101A).

7. References
Andrews, T. L. and Macé, C. (2013). Beyond the tree of

texts: Building an empirical model of scribal variation
through graph analysis of texts and stemmata. Literary
and Linguistic Computing.

Büchler, M., Geßner, A., Eckart, T., and Heyer, G. (2010).
Unsupervised Detection and Visualisation of Textual
Reuse on Ancient Greek Texts. Journal of the Chicago

Colloquium on Digital Humanities and Computer Sci-
ence, 1(2).

Cole, R. (2001). Automated Layout of Concept Lat-
tices Using Layered Diagrams and Additive Diagrams.
In Proceedings of the 24th Australasian Conference on
Computer Science, ACSC ’01, pages 47–53, Washing-
ton, DC, USA. IEEE Computer Society.

Dekker, R. H. and Middell, G. (2011). Computer-
Supported Collation with CollateX: Managing Textual
Variance in an Environment with Varying Requirements.
Supporting Digital Humanities 2011.

Eiglsperger, M., Siebenhaller, M., and Kaufmann, M.
(2004). An Efficient Implementation of Sugiyama’s Al-
gorithm for Layered Graph Drawing. In Proceedings of
the 12th International Conference on Graph Drawing,
GD’04, pages 155–166, Berlin, Heidelberg. Springer-
Verlag.

Eppstein, D., Goodrich, M. T., and Meng, J. Y. (2007).
Confluent Layered Drawings. Algorithmica, 47(4):439–
452.

Gansner, E. R., Koutsofios, E., North, S. C., and phong Vo,
K. (1993). A Technique for Drawing Directed Graphs.
IEEE Transactions on Software Engineering, 19(3):214–
230.

Jänicke, S., Geßner, A., Büchler, M., and Scheuer-
mann, G. (2014). Visualizations for Text Re-use. In
GRAPP/IVAPP, pages 59–70.

Pupyrev, S., Nachmanson, L., and Kaufmann, M. (2011).
Improving Layered Graph Layouts with Edge Bundling.
In Brandes, U. and Cornelsen, S., editors, Graph Draw-
ing, volume 6502 of Lecture Notes in Computer Science,
pages 329–340. Springer Berlin Heidelberg.

Schmidt, D. and Colomb, R. (2009). A Data Structure for
Representing Multi-version Texts Online. Int. J. Hum.-
Comput. Stud., 67(6):497–514, June.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for Visual Understanding of Hierarchical System Struc-
tures. Systems, Man and Cybernetics, IEEE Transac-
tions on, 11(2):109–125, Feb.

Utech, J., Branke, J., Schmeck, H., and Eades, P.
(1998). An Evolutionary Algorithm for Drawing Di-
rected Graphs. In Proceedings of the International Con-
ference on Imaging Science, Systems and Technology,
pages 154–160. CSREA Press.

Wattenberg, M. and Viégas, F. B. (2008). The Word Tree,
an Interactive Visual Concordance. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1221–
1228, November.

