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Visualization of Graph Products

Stefan Janicke, Christian Heine, Marc Hellmuth, Peter F. Stadler, and Gerik Scheuermann

Fig. 1. Hierarchical graph product layout: the four factors (left), top-layer view (middle) and a zoom to the second layer (right).

Abstract—Graphs are a versatile structure and abstraction for binary relationships between objects. To gain insight into such rela-
tionships, their corresponding graph can be visualized. In the past, many classes of graphs have been defined, e.g. trees, planar
graphs, directed acyclic graphs, and visualization algorithms were proposed for these classes. Although many graphs may only be
classified as “general” graphs, they can contain substructures that belong to a certain class. Archambault proposed the TopoLayout
framework: rather than draw any arbitrary graph using one method, split the graph into components that are homogeneous with re-
spect to one graph class and then draw each component with an algorithm best suited for this class. Graph products constitute a class
that arises frequently in graph theory, but for which no visualization algorithm has been proposed until now. In this paper, we present
an algorithm for drawing graph products and the aesthetic criterion graph product’s drawings are subject to. We show that the popular
High-Dimensional Embedder approach applied to cartesian products already respects this aestetic criterion, but has disadvantages.
We also present how our method is integrated as a new component into the TopoLayout framework. Our implementation is used for

further research of graph products in a biological context.

Index Terms—Graph drawing, graph products, TopoLayout.

1 INTRODUCTION

To gain insight into binary relationships between objects, the relations
are often coded into a graph, which is then visualized. The visualiza-
tion is usually split in the layout and the drawing phase. The layout is
a mapping of graph elements to points and curves in R?. The drawing
assigns graphical shapes to the graph elements and draws them using
the positions computed in the layout.

Many classes of graphs have been defined, e.g. trees, planar graphs,
acyclic directed graphs, etc. However, most binary relationships that
arise in nature do not fall in either of these classes and may only be
represented as general graphs. While many layout algorithms exist
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that are tuned for special graph classes, there is no single sophisticated
approach for general graphs, in the sense that if such a general method
is applied to instances of a special graph class, the results are often
inferior than using a specialized layout algorithm.

The structure of general graphs is often inhomogeneous. For many
graphs it was found that there are parts that connect more with each
other than with the rest of the graph. Detecting these clusters and
successively collapsing them to single vertices results in a graph’s hi-
erarchical decomposition that can be visualized and explored at dif-
ferent levels of detail. A related idea is present in the TopoLayout
[2] approach: Even if a graph does not belong to a special graph class,
substructures may. Therefore, their detection and collapsing also leads
to a hierarchy, usually with a different graph class at each node of the
hierarchy. TopoLayout can be seen as a generalization of graph clus-
tering, as it treats clusters as a regular graph class in this framework.

A graph class that has not yet been discussed for automatic visual-
ization is the class of graph products. A graph product is the result of
a multiplication operation defined for graphs. For an general overview
we refer the interested reader to [23]. According to [23] there are six
options for defining a product for graphs, where the multiplication is
associative, commutative, and has a unit. These products all have a
vertex set that is the Cartesian product of the factors’ vertex sets and
differ only in their edge sets. Fig. 2 shows an example of the two graph
products we are mainly concerned with in this paper: the Cartesian and
the strong product.

Many graphs have a product structure. Rectangular meshes are
Cartesian products of paths. The Cartesian product of two cycles is
a surface mesh of a torus. Each complete graph K, is a strong prod-



Fig. 2. Two factors and their Cartesian and strong product.

In the image each factor is associated with a color. The colored edges
of the products are called Cartesian edges and the grey edges of the
strong product are the cross edges. If only the colors of one factor are
considered and all other edges deleted, the remaining graph consists
of multiple connected components: its fibers.

uct of K, ,...,Kp, where p1,...,p; are n’s prime factors. Hamming
graphs are the Cartesian product of complete graphs. A well-known
Hamming graph is the d-dimensional hypercube, that is the Cartesian
product of d edges. Therefore, graph products can be seen as a gener-
alization of many graphs with regular structure.

The visualization of graph products was motivated from a biologi-
cal model proposed by Wagner and Stadler [34] that provided a con-
cept concerning the topological theory of the relationships between
genotypes and phenotypes. In this framework, a so-called “character”
(trait) is identified with a factor of a generalized topological space that
describes the variational properties of a phenotype. While these char-
acters are usually not directly visible as an attribute of an organism,
e.g. length of fingers, number of limbs, etc., the attributes are a com-
bination of these traits. A graph can be constructed from the set of
phenotypes and an “accessibility relation”, that describes which phe-
notypes are interconvertible over short evolutionary time-scales. This
evolution of phenotypes is reflected in the corresponding phenotype
graph, that is itself (at least on a local level) a product graph (Fig. 3).
The problem is thus to find the factors that represent the character’s
evolution from the phenotype graph, i.e. their product. Therefore, a
visualization for product graphs is needed that can effectively com-
municate the quality of results by emphasizing the regularity of graph
structure through regularity of layout.

Other areas where graph products play an important role can be
found in computational engineering, e.g., for the formation of finite
element models or construction of localized self-equilibrating systems
in computational engineering, see [29, 27, 28]. Typical tasks in scien-
tific computing, like solving discretized partial differential equations,
need computational meshes. Hamming graphs can be used to organize
peers in a P2P network [1, 32].

2 RELATED WORK

For a general overview of graph layout for general graphs and special
graph classes we refer the reader to [5, 3, 26, 22]. However, there does
not exist an automatic layout algorithm tuned for graph products.

As one of our methods is a modification of the Fruchterman-
Reingold algorithm [12], which is an algorithm for drawing general
undirected graphs, we will give a brief account of it. Fruchterman and
Reingold based their work on Eades [8], who viewed a graph’s ver-
tices as electrically charged particles that repel each other and edges
as springs that attract particles. The layout of the graph is then found
as an equilibrium state of that particle system by letting each particle
move according to the forces acting on it and slowly cooling the sys-
tem by restricting the maximum movement per iteration. Fruchterman
and Reingold extended this work by using a different force formula
for springs, removing the repelling forces between distant particles,

Fig. 3. Phenotype space graph of two characters.

The factors representing variational properties of phenotypes. The red
factor indicates the “bodies” and the blue factor the “faces” of ani-
mals. Their multiplication forms a graph product: the phenotype space
graph. It describes the possible evolution of phenotypes over short
evolutionary time-scales. adapted from: [33].

and constraining the layout to an area, so that the area could be subdi-
vided into cells and repelling forces are only needed to be computed
inside the cells and their neighbors. This general approach has been
modified often, mostly to improve convergence and run-time. Frick
et al. [9] defined a local temperature for each vertex and gave heuris-
tics to detect oscillations of subgraphs and cooling them faster. Hachul
and Jiinger [15] presented a multi-pole approach called FM? that ap-
proximates repelling forces to distant vertices rather than computing
them exactly and were thereby able to speed up the layout generation
significantly. Different multi-level approaches exist [13, 35, 18] that
first build ever coarser versions of the input graph and then compute
layout for the graphs from coarsest to finest in each step using the
layout of the coarser graph as a template. They improve the conver-
gence and run-time of the layout algorithm. Hachul and Jiinger [16]
gave an experimental evaluation for the different methods identifying
FM? as the most versatile layout algorithm. More recent work focused
on using the GPU to compute the layouts with different acceleration
structures [10, 11].

A different notion of force-directed methods is the spring embed-
der of Kamada and Kawai [25] which uses springs of a certain stiffness
and ideal length. The springs can act both attracting and repelling de-
pendent on their current length. Rather than using repelling forces
for vertices, each pair of vertices is connected by one spring with
ideal length being the graph-theoretic distance between the vertex pair.
The systems energy is coded in the stress which is then minimized.
Gansner et al. [14] identified the similarity of the problem with classi-
cal multi-dimensional scaling and proposed to use stress majoriziation
to minimize the stress.

Although the preservation of symmetry is generally attributed to
force- and spring-based algorithms, this seems to be only true for
local substructures like clusters. Substructures that span the whole
graph, like fibers of graph products, are usually not represented simi-
larly; they often are subject to continuous deformation from one border
of the layout to the other. For this reason, neither the Fruchterman-
Reingold method, Kamada-Kawai, nor their many variations can be
applied directly to draw graph products.

Harel and Koren [19] presented a very fast and robust method
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called High-Dimensional Embedding (HDE) for drawing large graphs
by carefully selecting landmark vertices of the graph that “span” the
graph and then using a maximum variance projection of the graph dis-
tances to these landmarks.

A recent direction is drawing graphs with constraints [7]. However,
constraints between groups of vertices only ensure that these groups do
not overlap. Constraining groups of vertices to have the same layout
is yet not possible in this framework.

The TopoLayout [2] algorithm builds a hierarchy of a graph by suc-
cessive finding and splitting of substructures. The first phase splits the
graph in its connected components. The second phase splits trees from
each connected component. The third phase splits the graph into bi-
connected components and recurses in them. Each biconnected com-
ponent is then checked whether it is suited to be drawn as an HDE
component, whether is is a complete graph, or whether it consists of
clusters (in that order). In the last case, the graph is split in its clus-
ters and a graph for the inter-cluster connections. To these graphs the
TopoLayout algorithm is applied recursively.

3 GRAPH PRODUCTS

In this paper, we use definitions similar to [6] and [23]. A graph
G = (V,E) is an ordered pair of a vertex ser V and an edge set E
that consists of 2-element subsets of V. We assume that V is finite.
For each edge {u,v} € E, u and v are called adjacent to each other. A
graph G’ = (V' E’) is a subgraph of G = (V,E), written as G’ C G, if
V' CV and E' CE. A subgraph G' = (V' E') is a spanning subgraph
of G=(V,E),if V' =V.

Given two factors G; = (V1,E;) and Gy = (V,,E3), the Carte-
sian product Go = (V,Eg) = G10G, and the strong product G =
(V,Ex) = G1 X G, are defined as follows:

Vv = V1><V2:{(VI,V2)|V1GVl,V2€V2}
Eq = {{(vi,u2),(vi,v2)}vi € Vi, {uz,m} € Ex}
U {{(u1,v2), (vi,v2) H{ur,vi} € Er,vp € Vo)
Ex = EqgU{{(u;,w),(vi,v2)}{ur,vi} € Ey,{uz, 2} € Ep}.

It is imminent from the definition that the Cartesian product is a span-
ning subgraph of the strong product. The edges the strong product
shares with the Cartesian product are called the Cartesian edges, and
the other edges are called cross edges.

A graph G is prime with respect to one of these products if the only
product that is isomorphic to it is the product of G with the graph
({v},0) (the unit).

The definitions extend naturally to multiple factors. For instance,
for the Cartesian product Go = GU...0JG; we get:

V:{(vl,...,vk)|v,-€V,~,l Slgk}

Eq= {{(vh.,.7u1,...,vk),(v17...7v17...7vk)}|v,- € V,-,{ul,vl} GE]}.

From this we can observe two things: each vertex of V is uniquely
defined by a list of vertices from each factor, its coordinates, and each
edge of Eq has exactly one origin edge, {u;,v;}, from one factor G;.
If we create a spanning subgraph of G that contains only the edges
that originate from G; for one particular /, the connected components
of that subgraph are called the G;-fibers; each one being isomorphic
to G;. For each vertex v; of each factor G;, we can define the set of
instances of that vertex in the different fibers as follows:

Ly ={(x1,- v, x )i € Vi, 1 <i<k,i#l}.

4 VISUALIZATION OF GRAPH PRODUCTS

In previous work that treated graph products from a theoretical point,
e.g. [23], illustrations were created manually, but one property was vis-
ible in almost all of them: all fibers of a factor G; were drawn congru-
ently. More precisely, if the layout of one fiber was fixed, the layouts
of the others were simple translations of the first. This is necessary so
that all fibers of all factors can be drawn congruently. This style is il-
lustrated in Fig. 2. In order to stay consistent with established practice,
we adopted this as an aesthetic criterion for drawing graph products.

Generally, computation of a graph layout is subject to aesthetic cri-
teria, which describe the relationship between properties of the lay-
out and its impact on human understanding. See [3] for an overview.
Among these aesthetic criteria are, e.g. the minimization of edge cross-
ings, which has been shown to have the greatest impact on human un-
derstanding [31], minimization of total edge length, equal distribution
of vertices, and preservation symmetry. The last criterion is fulfilled,
if isomorphic substructures of a graph have a similar layout. The aes-
thetic criterion for drawing graph products can be seen as a specializa-
tion of the symmetry criterion.

In the remainder of this section, we present algorithms for auto-
mated creation of a graph product’s layout. They assume that the fac-
tors are given and construct the product from them. The methods are
straight-line layouts and reduce the layout problem to a positioning of
vertices. The method presented in Section 4.3 uses a modification of
the Fruchterman-Reingold layout [12] to the layout of each factor so
that the layout of the graph product looks nice. The method presented
in Section 4.4 requires a user-given order of factors to construct a lay-
ered view which can be used for exploration of large graph products.

4.1 Congruent Layout

Before we present the layout algorithms, we show how, by defining
each factor’s straight-line layout, a congruent layout can be obtained
by adding the positions of each product graph vertex’s coordinates.

Given k factors, Gy,...,Gy and their resulting graph product with
vertex set V. Let p; : V; — R? denote the position of each vertex of the
factor 1 <i < k in an Euclidean space R4, the position of each vertex
of V is then given by:

p:V — RY
(V],..,,Vk) — Z pi(V,').
1<i<k

Now we show that two fibers of the same factor are equivalent up to
translation. Let u; be a vertex of a factor G;, and A and B some fibers of
G;. The two instances of u; on these fibers are: a; € V;, 1 <i<k,i#1
and b; € V;, 1 <i < k,i# 1. u’s position with respect to A and B is
given by:

play,...;up,...;ar) = pr(u) + Z pi(a;)

1<i<k,il

pbrseup,. b)) =prw)+ Y, pilbi).
1<i<k, il

The difference vector of u; from the fiber A to B is therefore:

yax) = pi(bi) — pi(a;i).
1<i<k,il

p(bl,...,ul,...,bk)7p(al./...7l/il7...

Let v; be another vertex of factor G;. If the difference vector that was
used to move u; from fiber A to fiber B is added to v; in fiber A, it
becomes imminent that this moves v; to the same point as using p
directly.

abk)ip(alw" 7ak)

p(a],...,Vl,...7ak)+p(b],...,l/i[,... SULy - - -

=pv)+ Y, pila)+ Y, pilbi)—pi(a;)

1<i<k,i#l 1<i<k,izl

=p(v)+ Z pi(bi) = p(b1,...,v,...,by)
1<i<k,i#l

As all edges are drawn as straight lines, i.e. their points are defined by
linear interpolation between their incident vertices positions, they are
equivalent up to translation, too.



4.2 High-Dimensional Embedder (HDE)

The High-Dimensional Embedder of Harel and Koren [19] was al-
ready briefly mentioned in the related work, but in this section we
show that it gives a congruent layout for Cartesian graph products.
HDE selects m landmark vertices and then computes the graph-
theoretic distances of all input graph vertices to these m landmarks.
Conceptually, the resulting m-dimensional distance vectors of each
vertex are treated as positions in an m-dimensional space. A covari-
ance matrix is then computed from these positions and its two biggest
eigenvalue/eigenvector pairs are determined. These eigenvectors de-
scribe the directions of maximum variance and the final layout is ob-
tained by projecting the distance vectors into the plane spanned by
these vectors.

For Cartesian graph products, the graph-theoretic distances in the
product are strongly related to the distances in the factors. For any
two vertices of a Cartesian graph product, the distance between them
is simply the sum of distances inside each factor. For example, for
any two factors G, G, and any two vertices (uy,uy) and (vq,v;) of the
product G1G», the distance between them is the same as the distance
between u; and v in G| plus the distance between u; and v, in Gj.
Because of this relation, application of HDE to a Cartesian graph prod-
uct will create positions in the m-dimensional space that are already a
congruent layout. Linear operations on a congruent layout result in a
congruent layout again. Therefore, after the projection phase of HDE
the result is a congruent layout, independently of the landmarks and
eigenvectors used. However, we have observed that HDE often gives
unsatisfactory results, due to a tendency to collapse the layout of fibers
to lines even if they are tree-like or contain cycles. We also observed
that factors with a big diameter (maximum shortest distance between
any two vertices in a graph) dominate the drawing and factors with
low diameter are then only visible at great magnification. Therefore
we turned our attention to an algorithm which does not favor certain
factors.

4.3 Force-Directed Layout

Although it is trivial to construct the layout of a graph product from
the layout of its factors, not all factor layouts give the same qualita-
tive result for the product. The aim is therefore to find factor layouts
that maximize the quality of the product. The layout is nice if the ver-
tices are spread out uniformly across the drawing area. To avoid edge
crossing, the edges should be kept short. As force-directed approaches
achieve these goals for general graphs, we based our algorithm on one
of them: the Fruchterman-Reingold algorithm [12]. Although algo-
rithms exist, that perform better in terms of quality and run-time, they
are not that easily extended for our constraint to keep fibers congruent.

Like in the Fruchterman-Reingold algorithm we proceed iteratively,
moving vertices according to acting forces in each iteration. However,
to ensure that the layout of fibers stays congruent in each iteration,
vertices cannot be moved independently of each other. We found that
the product’s layout being a sum of the factors’ layouts is not only a
sufficient but also a necessary condition. Therefore, we do not move
vertices of the product, but vertices of the factors. However, forces are
still computed for the products vertices to ensure that it looks nice.

At each iteration we execute the following steps: first the current
product layout is computed from the layouts of its factors. Then,
forces f(vy,...,v) on the product’s vertices are calculated like in the
original Fruchterman-Reingold algorithm. The algorithm then com-
putes forces for all factor’s vertices by averaging the forces of their

instances:
F)=h,|"" Y £(v).

VGIVI

Then the vertices of each factor are moved just like in the
Fruchterman-Reingold algorithm, i.e, every vertex v; of each factor
G is shifted a bit in the direction of its corresponding force. We con-
strain each factor’s layout to a certain area, which in turn constrains
the layout of the product to an area, and therefore we can use the opti-
mization of Fruchterman and Reingold to reduce the number of vertex
pairs for which repelling forces have to be computed.

(a) no iterations (b) 15 iterations (c) 100 iterations

Fig. 4. Force-directed graph product layout example.

(a) after the initialization for the layout of G: Many vertices are
drawn close together and some edges overlap. (b) intermediate result:
the graph unfolds. (c) final layout showing good vertex distribution
and no overlapping edges.

We perform a traditional Fruchterman-Reingold on each factor to
obtain a starting configuration and finish the algorithm after a user-
provided fixed number of iterations. In contrast to a full Fruchterman-
Reingold layout on the product, where the number of iterations scale
roughly linear with the total number of vertices, the number of itera-
tions needed for our method scales linearly with the number of vertices
in the factors. As a rule-of-thumb, we use 10 times this total as the
number of iterations. Fig. 4 illustrates the algorithm for an example of
a two factor Cartesian product.

The complexity of this algorithm is defined by the complexity of
the underlying force directed method of Fruchterman and Reingold.
For the graph product with n vertices and m edges we have to calcu-
late O(m) attracting and an average of O(n) repelling forces in each
iteration. The calculation of the product layout from the factor lay-
out and the calculation of the factors’ forces from the product’s forces
each take O(k - n) time, where k denotes the number of factors.

4.4 Hierarchical Layout

Applying the force-directed algorithm of the former section for graph
products that are composed of thousands of vertices, we suspected that
the readability of the final layout was lost. In this case, the large num-
ber of edges produce many edge crossings because of the uniform ver-
tex distribution in the product’s layout. Now we present a hierarchical
algorithm that, for a given sequence of factors, presents the graph in
a hierarchical style, fibers being meta-nodes and edges between the
fibers being bundled. As this bundeling, that uses convex hulls, is
only efficient in R?, we only apply it in this case. The algorithm con-
ceptually composes the layout step by step starting with all vertices
positioned at origin and then shifting the vertices with each new fac-
tor that is considered. We assume that each factor has been laid out
independently with traditional Fruchterman-Reingold algorithm.

Initially, each vertex v € G is located at the origin of RY. The
first layout of G is defined by the layout of the first factor G, in the
following way: every vertex with the same coordinate v; according to
G will be shifted to the same position. For all other factors G;, each
vertex v € G is moved subject to its i-th coordinate by:

p(v) < p(v)+a-p(vi)
We choose « in a way that it removes overlaps of meta-nodes:

_ dmax(GID - DG,;])
dmin(Gi)

dpin 1s the minimum Euclidean distance between two vertices in the
layout of the factor graph G; and d,,4x defines the maximum Euclidean
distance between two vertices in the previously calculated layout L;
for G;J...0JG;_1. The multiplication with & ensures, that the edges
of the factor graph G; will be long enough, that the components of
L;_, that will be placed on every meta node of G;, do not overlap




To appear in an IEEE VGTC sponsored conference proceedings

Asquare A square

Acircle

Acircle

(a) coverage ratios of the factors of G

Fig. 5. Example hierarchical graph product layout.

(b) hierarchical layout of G  (c) hierarchical layout of G
with convex hulls

(a) The red factor produces a higher coverage ratio than the blue factor and thus precedes it in the initial order of factors for the hierarchical
layout (b). Using convex hulls (c) the dominance of the red factor is emphasized.

each other. Only after processing the last factor, all vertices of G
have distinct positions. At this point, we get a hierarchical draw-
ing for G, where the highest hierarchical level corresponds to the
last factor G and its meta nodes are representations for the layout of

The order of factors have a huge impact on the final layout of the
hierarchical graph product. Although this order can be specified by
the user, we also determine a “best” order of factors by finding a con-
figuration that uses a maximum of screen space and thus optimizes the
overall resolution. To create the ordering, we compute a coverage ratio
r; for each factor G;. Let d,,;;, denote the minimum distance between
two vertices in the layout of factor G;, we replace each vertex of G;
with a hyper-sphere, that has a diameter of d,,,;,. We contrast the sum
of the hyper-spheres’ volumes with an axis-parallel hypercube whose
side length equals the maximum vertex distance in any of the d di-
mensions plus d,;,. The coverage ratio r; is determined as the ratio
of the hyper-sphere volumes to hypercube volume. Finally, the factors
Gy,...,Gy are sorted from smaller to larger coverage ratios. The cov-
erage ratio for two factors is illustrated in Fig. 5, which also shows the
hierarchical layout.

Because the hierarchical method produces long edges, this usually
leads to more edge crossings. Fortunately, the edges have very regu-
lar layout. As all edges that originate from the same factor edge are
equivalent up to translation, their instances can be bundled and rep-
resented as one graphical shape. This shape is the convex hull of all
instances of the vertices the origin edge connects. As many of these
convex hulls repeat, especially in lower levels, rather than computing
them each time anew, we only need to compute one for each layer of
the hierarchy, and translate it for each node of that hierarchy level.

The complexity is one of the great advantages of this algorithm. Let
n be the number of vertices in G. At first, the coverage ratios must
be calculated for each factor. Therefore, getting the exact minimum
distance between two vertices and the maximum distance between two
hyper-sphere borders will both take O(nl-z), whereas n; is the amount of
vertices in G;. Since n; < n, the complexity of this phase is bounded
by O(k-n).

For the second part, we have to update the graph product layout in
every iteration. This takes O(n) time. Additionally, we must calculate
the maximum Euclidean distance d,,,, between two vertices in the
temporary layout of G. The exact distance can be computed in O(n?)
by comparing each vertex pair. Since this scales badly for large values
of n, we use the following upper bound instead: the maximum distance
of all vertices to their barycenter. It produces useful spaces between

the components of a layer, too, and de-stresses the final layout. The
complexity for this step is linear and for the whole phase we get O(k -
n), since we have to iterate over k factors.

Calculating the convex hulls for k — 1 hierarchy layers needs addi-
tional time. Except the highest layer, every convex hull occurs several
times on each of the other k — 2 layers. We only have to compute
one of these duplicate convex hulls, which is a representation for an
edge of the factor, a layer corresponds to. For other fibers we shift
the convex hull by the difference of the barycenters of the involved
vertices. So, we need to find m. convex hulls, where m, is the total
number of edges of the factors G»,...,Gy. On the highest layer, we
find the largest complexity, since the point-set that is used for convex
hull calculation has its maximum there. Let n; be the number of ver-
tices in Gy. Then, the point-set has a size of n, = ank. With this, we
can conclude, that the computation of all convex hulls is bounded by
O(m¢-nclogne).

5 VISUALIZATION OF STRONG AND APPROXIMATE GRAPH
PRODUCTS

Our force-directed algorithm (Section 4.3) extends naturally to strong
and so-called approximate graph products, as long as the factors and
the vertices’ coordinates are known.

It is quite simple to find the drawing for strong graph products. For-
tunately, there is no need to change any part of the layout algorithms.
In the algorithmic description we avoided any assumptions on the par-
ticular edge set, so the algorithm is directly applicable to any type of
graph product. The forces alter slightly because of the additional cross
edges of the strong graph product. The force-directed layout for the
strong product of two factors can be seen in Fig. 6(a). In comparison
to the Cartesian product, the red factor’s structure is narrower here and
the cross edges, which are colored grey, cause additional edge cross-
ings. We still obtain a similar layout for the strong product due to
symmetry.

An approximate product is a “perturbed” product graph, where
some edges or vertices are added or removed, see [20, 21]. Visualiz-
ing an approximate graph product needs additional work. On the one
hand, there are vertices with their incident edges which are missing
from the product, and on the other hand there are additional vertices
which are connected to the graph product, but do not have any coor-
dinates. To solve these problems, we calculate the layout for the cor-
responding graph product G which can be constructed from the given
factors. Then, we map the resulting positions for the vertices of G to
the existing vertices in the approximate product G using vertices’ co-



ordinates. If a vertex has no coordinates it is ignored for now. When
the product part has been laid out, the vertices’ positions are fixed and
a regular Fruchterman-Reingold is run on the additional vertices. Fi-
nally, we receive a complete layout for G. Fig. 6(b) shows an approx-
imate Cartesian graph product of two factor graphs. In comparison
to the unperturbed version (4(c)), three vertices are missing and four
vertices without coordinates were inserted. These vertices are easy to
figure out, since they only have grey colored outgoing edges.

(a) Strong Graph Product (b) Approximate Cartesian Graph

Product

Fig. 6. Layouts for a strong and an approximate graph product with 2
factors.

6 TOPOLAYOUT INTEGRATION

The class of graph products can easily be integrated into the TopoLay-
out framework. In contrast to clusters, which are local features, factors
span the graph or subgraph like a mesh, thereby pose an interesting
complement. However, as the algorithm for drawing products requires
each vertex’s coordinates, the analysis phase of TopoLayout must be
extended by an algorithm that recognizes and splits graph products
into their factors. We use the algorithm by Imrich and Peterin [24]
to detect Cartesian products. It runs in linear time and requires linear
space. For determining the strong product we use the algorithm pro-
vided by Hammack and Imrich [17] that runs in linear time for graphs
that have bounded degree.

We now discuss where in the TopoLayout pipeline the detection of
graph products is best situated. As every tree is prime, there is no need
to check for products before trees. Graph products are biconnected,
therefore it makes sense to check biconnected components. If a graph
product is encountered by the original TopoLayout, it is usually de-
tected as a HDE component, so checking after HDE would be too late.
We therefore put it after biconnected component and before HDE. For
each product that was detected, the factors are fed back to TopoLayout,
so that they can be further split into trees and biconnected components.

7 RESULTS

To illustrate the benefits of using one of our presented algorithms to
draw graph products, we compared the results to two widely used al-
gorithms, namely HDE [19], which also generates congruent layouts,
and Fast Multipole Multilevel Method (FM3) [15]. We compared the
quality of the generated layouts and the running time of the considered
algorithms. The system used in all experiments was a 3.07 GHz Intel
Core 17-950 CPU with 12 GB RAM running Linux.

We have tested the algorithm on a multitude of self-generated graph
products and graph products that we found in the University of Florida
Sparse Matrix Collection [4]. From these, we have selected three
graph products to show the differences between the algorithms men-
tioned. The properties of these graphs are listed in Table 1. Gy is
the graph GI2 of the matrix group Gset of the University of Florida
Collection. It is only one representative of numerous mesh-like graph
products we found in this graph collection. Some other examples are
gc324 and cddel-cdde6 of the Bai matrix group, GI1 and G13 of the
GSet group and nos7 of the HB group.

Table 1. Characteristics of the graph products from Fig. 7

graph G Gy G3
product size 800/1600 | 180/510 | 1440/7680
vertices/edges
factors 2 3 5
factor sizes 16/16 3/3, 6/5, 3/3, 4/4,
vertices/edges 50/50 10/10 5/5, 4/6, 6/5
HDE 0.24s 0.06s 0.72s
FM? 0.49s 0.1s 1.12s
force-directed 3.17s 0.37s 14.07s
hierarchical 0.06s 0.01s 0.14s

Fig. 7 shows different 2-dimensional layouts for the three graph
products. Note that neither HDE nor FM? recognize graph products
and are therefore unable to color edges based on the origin factor. De-
spite this, we choose to use these colors for their layouts and thereby
improve their readability, because we think that our algorithms still
perfom better with respect to quality. The obtained running times for
calculating the different drawings are provided in Table 1. First of
all, we recognize that the hierarchical algorithm is the fastest method,
which is due to the near-linear running time. HDE and FM? also gen-
erate their layouts in a relatively short time. Although we use the grid
variant of the Fruchterman-Reingold algorithm, the force directed ap-
proach has a very high computation time compared to the other algo-
rithms. This is due to the numerous iterations and a high computa-
tional effort in calculating repelling forces.

However, the graphical output points out the advantages of using
the force directed approach to visualize graph products. Particulary
for smaller graphs we get highly symmetrical layouts with very clearly
displayed adjacencies of vertices. The reason is that different fibers of
each factor stay congruent to each other in every iteration. Further-
more, the underlying force model leads to a good distribution of the
vertices. So every fiber of each factor is pointed out clearly. Thus, it
is easy to locate vertices with a specific coordinate vector. In terms of
graphical output, HDE and FM? unveil their weaknesses in visualizing
graph products. The distance-based calculation of HDE leads to good
representations of fibers of factors with large diameters at the expense
of factors with small diameters. The resulting piles of vertices can be
seen in most HDE-layouts. Another problem is the selection of land-
marks in HDE. We often observed collapse of factors’ fibers to a line,
depending on the (random) selection of the first landmark. Finally,
we conclude that HDE may provide the important congruent layouts
fast, but its graphical quality is worse than in the force directed ap-
proach. FM? shows better vertex distributions as HDE, which is due to
its force directed model. Nevertheless, the multi-level strategy leads to
a globally stable graph structure, but locally we receive deformations
of fibers in many parts of the graph product layout. This creates many
additional edge crossings, and, thus, deteriorates the readability of the
layouts significantly. However, the readability of the layouts is lost
in products with more than a thousand vertices and a high amount of
edge crossings and overlaps, regardless of using HDE, FM3, and our
own force directed algorithm. Then, the hierarchical approach is par-
ticularly well suited for visualizing. It also guarantees the congruency
of the different fibers and it always creates aesthetic layouts because
of the hierarchical structure. Even for products of several factors with
more than 100,000 vertices we obtain attractive layouts in a few sec-
onds.

The main advantage of the hierarchical layout for drawing product
graphs is the ability to see and to understand how the factors look like.
As one can see in Fig. 7(h), resp. in Fig. 7(1), it is much easier to
understand what the factors are, than in Fig. 7(g), resp. in Fig. 7(k),
where the same graphs are represented. Moreover, as shown in Fig.
1 and 8 it is possible to zoom into the product graph. In this way
we can visualize the local structure, i.e., the contained subproducts of
the given product graph. In particular, this method is an advantage if
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Fig. 8. Zoom into different layers for the hierarchical layout of 7(l)
(a) top-layer 1, (b) layer 2 of the bottom-right component of layer 1, (c) layer 3 of the top-left component of layer 2, (d) layer 4 of the bottom-left

of layer 3



one wants to visualize product graphs with many factors. Zooming
into those graphs makes clear how the different factors look like and
helps to understand the product structure on the several local levels
that exist.

We furthermore wanted to evaluate, whether the class of graph
products is occuring often in real-world data. In the University of
Florida Sparse Matrix Collection [4] which comprises 2101 graphs,
we classified 55 graphs as a graph product or to contain a graph prod-
uct according to TopoLayout. We classified graphs or graph compo-
nents as graph products only if their size exceeded 20 vertices, in order
to avoid counting the numerous K> K, and K4 that were found. The
products we found consisted of two or three factors and factors were
usually simple paths. The sizes ranged from 900 to 3200 vertices and
1250 to 7840 edges. For TopoLayout, the HB/wattl was particularly
interesting as it detected a 27x8x8 lattice augmented by many small
trees. These numbers do not indicate that graph products occur fre-
quently in nature, however, they do indicate that graph products are of
interest in other research contexts.

8 CONCLUSION AND FUTURE WORK

We have presented two algorithms for drawing product graphs. Both
are fast and produce nice looking pictures. In the force-directed
method each factor has the same influence on the layout, but it is only
useble if the number of factors is small. By keeping edges short, it
avoids edge crossings. For many factors, the edge crossings become
unavoidable and it is beneficial to make some edges long and bundle
them. This approach is present in the hierarchical layout of product
graphs which also captures on the notion of the factors defining a hi-
erarchy inside the product and allows an explorative analysis of large
graph products. The methods however are still limited to rather few
factors (usually less then 10) because the product grows enormously
in size with each additional factor.

Both methods were integrated into the TopoLayout framework and
can be applied to the six known graph products as well as perturbations
of them, as long as all factors and the coordinates of each vertex are
known.

In future work, we want to extend the recognition of graph products
inside TopoLayout to more types of products and at one time also to
perturbed graph products. Existing approaches only detect factors, but
not vertices’ coordinates.

Graph products have a general disadvantage: the product operation
lets the number of edges grow faster than the number of vertices. Con-
sidering that this has a very bad influence on the number of crossings,
it seems more natural to show the factors instead of the product. In our
current visualization tool we always show both. Once products have
been established in the visualization community, it may be possible to
never show the product but only the factors and symbol indicating the
used product operation.
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