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Proof of Lemma 1

The case (s, t) = (0, 0) is trivial. In case (s, t) 6= (0, 0), we obtain, using integration by parts,

m(un, s, t;x) = F̄ (un;x)

{∫ ∞
1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
Ḡ(z; γ(x), δ(un;x), ρ(x))dz

+

∫ ∞
1

[
szs−1(ln z)t + tzs−1(ln z)t−1

] [ F̄ (unz;x)

F̄ (un;x)
− Ḡ(z; γ(x), δ(un;x), ρ(x))

]
dz

}
=: F̄ (un;x)(T1 + T2).

By application of Taylor’s theorem to Ḡ, we have that

T1 =

∫ ∞
1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
z−1/γ(x)dz

−δ(un;x)

γ(x)

∫ ∞
1

[
szs−1(ln z)t + tzs−1(ln z)t−1

]
z−1/γ(x)

[
1− zρ(x)/γ(x)

]
dz + o(δ(un;x))

=: T1,1 −
δ(un;x)

γ(x)
T1,2 + o(δ(un;x)).
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Straightforward integration then gives

T1,1 =
γt(x)Γ(t+ 1)

(1− sγ(x))t+1
,

T1,2 = γt(x)Γ(t+ 1)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
,

and thus

T1 = γt(x)Γ(t+ 1)

{
1

(1− sγ(x))t+1
− δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

}
.

A slight modification of Proposition 2.3 in Beirlant et al. (2009) gives that

sup
z≥1

z1/γ(x)

∣∣∣∣ F̄ (unz;x)

F̄ (un;x)
− Ḡ(z; γ(x), δ(un;x), ρ(x))

∣∣∣∣ = o(δ(un;x)), un →∞,

and hence T2 = o(δ(un;x)).

Combining the above results establishes Lemma 1.

Proof of Lemma 2

By application of the rule of repeated expectations we obtain

m̃n(K, s, t;x) = E[Khn(x−X)m(un, s, t;X)]

=

∫
Ω
K(z)m(un, s, t;x− hnz)b(x− hnz)dz,

so, by straightforward calculations,

|m̃n(K, s, t;x)− b(x)m(un, s, t;x)|

≤ m(un, s, t;x)

∫
Ω
K(z)|b(x− hnz)− b(x)|dz

+b(x)

∫
Ω
K(z)|m(un, s, t;x− hnz)−m(un, s, t;x)|dz

+

∫
Ω
K(z)|b(x− hnz)− b(x)||m(un, s, t;x− hnz)−m(un, s, t;x)|dz

=: T3 + T4 + T5.

Concerning T3, by (B) and (K)

T3 ≤ m(un, s, t;x)cbhn

∫
Ω
K(z)d(0, z)dz

= m(un, s, t;x)b(x)O(hn).
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The term T4 can be analyzed by invoking (M) and (K) yielding

T4 = m(un, s, t;x)b(x)O(Φ(un, hn;x)).

Finally, applying similar arguments to T5 gives that T5 = m(un, s, t;x)b(x)O(hnΦ(un, hn;x)),

and the result follows.

Proof of Theorem 1

Note that

P(j)
n (s) =

√
n

[
1

n

n∑
i=1

1√
hpnF̄ (un;x)b(x)

K

(
x−Xi

hn

)(
Yi
un

)s(
ln
Yi
un

)j
1{Yi > un}

−E

(
1√

hpnF̄ (un;x)b(x)
K

(
x−X
hn

)(
Y

un

)s(
ln
Y

un

)j
1{Y > un}

)]
, j ∈ J.

As such, the empirical processes under consideration fit in the framework of Section 19.5 in van

der Vaart (2007) on changing function classes. Indeed, we can consider the classes W(j)
n :=

{w(j)
n,s; s ∈ [S, 0]}, where

w(j)
n,s(v, y) :=

1√
hpnF̄ (un;x)b(x)

K

(
x− v
hn

)(
y

un

)s(
ln

y

un

)j
1{y > un}, j ∈ J.

So, for the marginal convergence of the processes, it is sufficient to verify the conditions of The-

orem 19.28 in van der Vaart (2007).

First, by Lemmas 1 and 2

E[w(j)
n,s(X,Y )− w(j)

n,t(X,Y )]2

=
‖K‖22

F̄ (un;x)b(x)
E

 1

hpn‖K‖22
K2

(
x−X
hn

)[(
Y

un

)s
−
(
Y

un

)t]2(
ln
Y

un

)2j

1{Y > un}


≤ ‖K‖

2
2(s− t)2

F̄ (un;x)b(x)
E

(
1

hpn‖K‖22
K2

(
x−X
hn

)(
ln
Y

un

)2(j+1)

1{Y > un}

)
= (2(j + 1))!γ2(j+1)(x)(s− t)2‖K‖22(1 + o(1)).
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Note that the o(1) term above does not depend on s and t, and therefore

sup
|s−t|<δn

E[w(j)
n,s(X,Y )− w(j)

n,t(X,Y )]2 ≤ (2(j + 1))!γ2(j+1)(x)δ2
n‖K‖22(1 + o(1))

→ 0,

for every sequence δn ↓ 0.

Next we verify the Lindeberg condition. Note that the envelope function W
(j)
n for W(j)

n can be

taken as

W (j)
n (v, y) =

1√
hpnF̄ (un;x)b(x)

K

(
x− v
hn

)(
ln

y

un

)j
1{y > un}, j ∈ J.

Using Lemmas 1 and 2, we then have

E
[
(W (j)

n (X,Y ))2
]

=
‖K‖22

F̄ (un;x)b(x)
E

[
1

hpn‖K‖22
K2

(
x−X
hn

)(
ln
Y

un

)2j

1{Y > un}

]
= γ2j(x)(2j)!‖K‖22(1 + o(1)) = O(1),

and, for every ε, α > 0,

E
[
(W (j)

n (X,Y ))21{W (j)
n (X,Y ) > ε

√
n}
]

≤ 1

εαnα/2
E
[
(W (j)

n (X,Y ))2+α
]

=
‖K2+α‖1

εα(nhpnF̄ (un;x)b(x))α/2
1

F̄ (un;x)b(x)
E

[
1

hpn‖K2+α‖1
K2+α

(
x−X
hn

)(
ln+

Y

un

)j(2+α)

1{Y > un}

]

= O

(
1

(nhpnF̄ (un;x))α/2

)
→ 0,

if nhpnF̄ (un;x)→∞, j ∈ J .

Thirdly, we verify the condition on the bracketing integrals J[ ](δn,W
(j)
n , L2(P)), j ∈ J , in

Theorem 19.28 of van der Vaart (2007). We have that

|w(j)
n,s(v, y)− w(j)

n,t(v, y)| ≤ |s− t|√
hpnF̄ (un;x)b(x)

K

(
x− v
hn

)(
ln

y

un

)j+1

1{y > un},

=: |s− t|w(j)(v, y).
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Note

E
[(
w(j)(X,Y )

)2
]

= γ2(j+1)(x)(2(j + 1))!‖K‖22(1 + o(1)), j ∈ J.

So that the condition on J[ ](δn,W
(j)
n , L2(P)), j ∈ J , is easy to verify using the result of Example

19.7 in van der Vaart (2007) on parametric function classes.

Finally, we comment on the pointwise convergence of the covariance functions on [S, 0]2. For

(s1, s2) ∈ [S, 0]2 we have that

Cov(P(j)
n (s1),P(j)

n (s2))

= Cov(w(j)
n,s1(X,Y ), w(j)

n,s2(X,Y ))

=
‖K‖22

F̄ (un;x)b(x)
E

[
1

hpn‖K‖22
K2

(
x−X
hn

)(
Y

un

)s1+s2 (
ln
Y

un

)2j

1{Y > un}

]

− hpn

F̄ (un;x)b(x)
E

[
Khn(x−X)

(
Y

un

)s1 (
ln
Y

un

)j
1{Y > un}

]
×

E

[
Khn(x−X)

(
Y

un

)s2 (
ln
Y

un

)j
1{Y > un}

]

→ γ2j(x)(2j)!‖K‖22
[1− (s1 + s2)γ(x)]1+2j

, n→∞; j ∈ J.

The joint convergence of the empirical processes follows then from the fact that the coordinate

classes being Donsker is equivalent to the union of the coordinate classes being Donsker, see

van der Vaart p. 270. The pointwise convergence of the covariances between the processes P(j)
n ,

j ∈ J , can be established along the same line of arguments as above.

Proof of Theorem 2

To prove the existence and consistency of (γ̂n(x), δ̂n(x)) we adapt the proof of Theorem 5.1

in Chapter 6 of Lehmann and Casella (1998), where existence and consistency of solutions of

the likelihood equations is established, to the MDPDE framework. Let Qr denote the sphere

centered at (γ0(x), 0) and radius r, and let ∆̂α(γ, δ; ρ) denote the density power divergence

objective function. Note that r should be such that Qr is a subset of the parameter space. First
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we rescale ∆̂α(γ, δ; ρ) as ∆̃α(γ, δ; ρ) := ∆̂α(γ, δ; ρ)/(F̄ (un;x)b(x)), and we show that for any r

sufficiently small

P(γ0(x),0)(∆̃α(γ0(x), 0; ρ0(x)) < ∆̃α(γ, δ; ρ0(x)) for all (γ, δ) on the surface of Qr)→ 1.

Let fs(γ, δ; ρ0(x)), s = 1, 2, denote the derivatives of ∆̃α(γ, δ; ρ0(x)) with respect to γ and δ, re-

spectively, without the common scale factor 1+α. Similarly, fst and fstu, s, t, u = 1, 2, denote the

second and third order derivatives, respectively (again apart from the common scaling by 1+α).

By Taylor’s theorem

∆̃α(γ, δ; ρ0(x))− ∆̃α(γ0(x), 0; ρ0(x))

= (1 + α) {f1(γ0(x), 0; ρ0(x))(γ − γ0(x)) + f2(γ0(x), 0; ρ0(x))δ

+
1

2

[
f11(γ0(x), 0; ρ0(x))(γ − γ0(x))2 + f22(γ0(x), 0; ρ0(x))δ2 + 2f12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

]
+

1

6

[
f111(γ̃, δ̃; ρ0(x))(γ − γ0(x))3 + f222(γ̃, δ̃; ρ0(x))δ3 + 3f112(γ̃, δ̃; ρ0(x))(γ − γ0(x))2δ

+3f122(γ̃, δ̃; ρ0(x))(γ − γ0(x))δ2
]}

(A-1)

=: (1 + α){S1 + S2 + S3},

where (γ̃, δ̃) is a point on the line segment connecting (γ, δ) and (γ0(x), 0). After some tedious,

but straightforward derivations one obtains

f1(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[
− αγ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))]2
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+γ0(x)
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

]
,

f2(γ0(x), 0; ρ0(x))

= γ−α−1
0 (x)

[
− αρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1− ρ0(x) + α(1 + γ0(x))]

Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
−(1− ρ0(x))

Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

]
.

By using the results of Lemmas 1, 2 and Theorem 1, we have that f1(γ0(x), 0; ρ0(x))
P→ 0 and

f2(γ0(x), 0; ρ0(x))
P→ 0, so, for any given r > 0 we have that |f1(γ0(x), 0; ρ0(x))| < r2 and
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|f2(γ0(x), 0; ρ0(x))| < r2 with probability tending to 1, and hence, on Qr, |S1| < 2r3 with prob-

ability tending to 1.

We now focus on the second order derivatives appearing in S2. Again, by tedious calculus one

obtains

f11(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
α+ 2

1 + α(1 + γ0(x))
− 2α+ 4

[1 + α(1 + γ0(x))]2
+

2α+ 2

[1 + α(1 + γ0(x))]3

)
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

−(α+ 1)
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
+

2α+ 2

γ0(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

− α

γ2
0(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 2;x)

F̄ (un;x)b(x)

]
,

f12(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
1 + α(2 + α)(1 + γ0(x))

[1 + α(1 + γ0(x))]2

−(1− ρ0(x))2 − α[ρ0(x)(1− ρ0(x))− 2(1 + γ0(x))(1− ρ0(x))] + α2(1 + γ0(x))(1− ρ0(x))

[1− ρ0(x) + α(1 + γ0(x))]2

)
×Tn(K, 0, 0;x)

F̄ (un;x)b(x)
− (1 + α)

Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+(α+ 1)(1− ρ0(x))
Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+
α

γ0(x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

−(α− ρ0(x))(1− ρ0(x))

γ0(x)

Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 1;x)

F̄ (un;x)b(x)

]
,

f22(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

[(
1 + α+ γ0(x)

1 + α(1 + γ0(x))
− 2(1− ρ0(x))(1 + γ0(x) + α)

1− ρ0(x) + α(1 + γ0(x))

+
(1 + γ0(x))(1− 2ρ0(x)) + α(1− ρ0(x))2

1− 2ρ0(x) + α(1 + γ0(x))

)
Tn(K, 0, 0;x)

F̄ (un;x)b(x)

−(α+ γ0(x))
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

+2(1− ρ0(x))(α+ γ0(x))
Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

−[(1 + γ0(x))(1− 2ρ0(x)) + (α− 1)(1− ρ0(x))2]
Tn(K,−(α(1 + γ0(x))− 2ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

]
.

Now, let f∗st(γ0(x), 0; ρ0(x)) denote the limits of the random terms fst(γ0(x), 0; ρ0(x)), s, t = 1, 2.
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These can be obtained from the results of Lemmas 1, 2 and Theorem 1, and are given by

f∗11(γ0(x), 0; ρ0(x)) = γ−α−2
0 (x)

1 + α2(1 + γ0(x))2

[1 + α(1 + γ0(x))]3
,

f∗12(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

ρ0(x)(1− ρ0(x))[1 + α(1 + γ0(x)) + α2(1 + γ0(x))2] + α3ρ0(x)(1 + γ0(x))3

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2
,

f∗22(γ0(x), 0; ρ0(x))

= γ−α−2
0 (x)

(1− ρ0(x))ρ2
0(x) + αρ2

0(x)(1 + γ0(x))[α(1 + γ0(x))− ρ0(x)]

[1 + α(1 + γ0(x))][1− ρ0(x) + α(1 + γ0(x))][1− 2ρ0(x) + α(1 + γ0(x))]
.

Now, write

2S2 = f∗11(γ0(x), 0; ρ0(x))(γ − γ0(x))2 + f∗22(γ0(x), 0; ρ0(x))δ2 + 2f∗12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

+[f11(γ0(x), 0; ρ0(x))− f∗11(γ0(x), 0; ρ0(x))](γ − γ0(x))2

+[f22(γ0(x), 0; ρ0(x))− f∗22(γ0(x), 0; ρ0(x))]δ2

+2[f12(γ0(x), 0; ρ0(x))− f∗12(γ0(x), 0; ρ0(x))](γ − γ0(x))δ.

Note that the first three terms are in fact a nonrandom positive definite quadratic form in

(γ − γ0(x)) and δ. This can be verified analytically, but the result is not included in the

appendix. By the spectral decomposition this quadratic form can be rewritten as λ1ξ
2
1 + λ2ξ

2
2 ,

where 0 < λ1 ≤ λ2 are the eigenvalues and ξ1 and ξ2 are orthogonal transformations of (γ−γ0(x))

and δ. Note that in this new coordinate system Qr becomes ξ2
1 +ξ2

2 = r2. Thus, for the quadratic

form we have that λ1ξ
2
1 + λ2ξ

2
2 ≥ λ1(ξ2

1 + ξ2
2) = λ1r

2. For the random part of S2 we know from

Lemmas 1, 2 and Theorem 1 that fst(γ0(x), 0; ρ0(x))
P→ f∗st(γ0(x), 0; ρ0(x)), s, t = 1, 2, and thus

in absolute value the random part is less than 4r3 with probability tending to 1. Overall, we

have that there exists c > 0 and r0 > 0 such that for r < r0

S2 > cr2

with probability tending to 1.

For the term S3, one can show that |fstu(γ, δ; ρ0(x))| ≤Mstu(V ), where V := [(X1, Y1), . . . , (Xn, Yn)],

for (γ, δ) ∈ Qr, with Mstu(V )
P→ mstu, s, t, u = 1, 2, which is bounded. The derivations are
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straightforward, and are for brevity omitted from the appendix. Thus, with probability tending

to 1, |fstu(γ̃, δ̃; ρ0(x))| < 2mstu, and hence |S3| < er3 on Qr, where

e :=
1

3

2∑
s=1

2∑
t=1

2∑
u=1

mstu.

Combining the above we find that with probability tending to 1,

min(S1 + S2 + S3) > cr2 − (2 + e)r3,

where the minimum is over (γ, δ) on the surface of Qr. Clearly, the right-hand side of the above

inequality is positive if r < c/(2 + e).

To complete the proof of the existence and consistency we adjust the line of argumentation of

Theorem 3.7 in Chapter 6 of Lehmann and Casella (1998). For r > 0, small enough such that

Qr is a subset of the parameter space, consider

Sn(r) := {v : ∆̃α(γ0(x), 0; ρ0(x)) < ∆̃α(γ, δ; ρ0(x)) for all (γ, δ) on the surface of Qr}.

From the above we have that P(γ0(x),0)(Sn(r)) → 1 for any such r, and hence there exists

a sequence r∗n ↓ 0 such that P(γ0(x),0)(Sn(r∗n)) → 1 as n → ∞. By the differentiability of

∆̃α(γ, δ; ρ0(x)) we have that v ∈ Sn(r∗n) implies that there exists a point (γ̂n(r∗n), δ̂n(r∗n)) ∈ Qr∗n
for which ∆̃α(γ, δ; ρ0(x)) attains a local minimum, and thus fs(γ̂n(r∗n), δ̂n(r∗n); ρ0(x)) = 0, s =

1, 2. Now let (γ̂∗n(x), δ̂∗n(x)) := (γ̂n(r∗n), δ̂n(r∗n)) for v ∈ Sn(r∗n) and arbitrary otherwise. Clearly

P(γ0(x),0)(f1(γ̂∗n(x), δ̂∗n(x); ρ0(x)) = 0, f2(γ̂∗n(x), δ̂∗n(x); ρ0(x)) = 0) ≥ P(γ0(x),0)(Sn(r∗n))→ 1,

as n → ∞. Thus with probability tending to 1 there exists a sequence of solutions to the

estimating equations (7) and (8). Also, for any fixed r > 0 and n sufficiently large

P(γ0(x),0)(d((γ̂∗n(x), δ̂∗n(x)), (γ0(x), 0)) < r) ≥ P(γ0(x),0)(d((γ̂∗n(x), δ̂∗n(x)), (γ0(x), 0)) < r∗n)

≥ P(γ0(x),0)(Sn(r∗n))→ 1,

which establishes the consistency of the sequence (γ̂∗n(x), δ̂∗n(x)).
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Proof of Corollary 1

We have that

S(j)
n (s) = P(j)

n (s) + rn

[
E
(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)
− j!γj0(x)

[1− sγ0(x)]1+j

]
, j ∈ J.

From Lemmas 1 and 2

rn

[
E
(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)
− j!γj0(x)

[1− sγ0(x)]1+j

]

= −λ
√
b(x)j!γj−1

0 (x)

[
1

[1− sγ0(x)]j+1
− 1− ρ0(x)

[1− ρ0(x)− sγ0(x)]j+1

]
+ o(1), j ∈ J,

where the o(1) terms are uniform in s ∈ [S, 0].

Proof of Theorem 3

To start we establish the joint limiting distribution of the random terms appearing in fs(γ0(x), 0; ρ0(x)),

s = 1, 2, when appropriately normalized. Let

Tn :=
1

F̄ (un;x)b(x)


Tn(K, 0, 0;x)

Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

 ,

T̃ :=


1

1
1+α(1+γ0(x))

1
1−ρ0(x)+α(1+γ0(x))

γ0(x)
[1+α(1+γ0(x))]2

 ,

and set An(ρ0(x)) := rn[Tn − T̃]. Thus, from Corollary 1, we get that

An(ρ0(x)) N4(λ
√
b(x)D,Σ(ρ0(x))),
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where D is a (4× 1) vector with elements

D1 := 0,

D2 := − αρ0(x)(1 + γ0(x))

γ0(x)[1 + α(1 + γ0(x))][1− ρ0(x) + α(1 + γ0(x))]
,

D3 := − ρ0(x)[α(1 + γ0(x))− ρ0(x)]

γ0(x)[1− ρ0(x) + α(1 + γ0(x))][1− 2ρ0(x) + α(1 + γ0(x))]
,

D4 :=
ρ0(x)(1− ρ0(x))− α2ρ0(x)(1 + γ0(x))2

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2
,

and Σ(ρ0(x)) a symmetric (4× 4) matrix with elements

σ11(ρ0(x)) := ‖K‖22,

σ21(ρ0(x)) :=
‖K‖22

1 + α(1 + γ0(x))
,

σ22(ρ0(x)) :=
‖K‖22

1 + 2α(1 + γ0(x))
,

σ31(ρ0(x)) :=
‖K‖22

1− ρ0(x) + α(1 + γ0(x))
,

σ32(ρ0(x)) :=
‖K‖22

1− ρ0(x) + 2α(1 + γ0(x))
,

σ33(ρ0(x)) :=
‖K‖22

1− 2ρ0(x) + 2α(1 + γ0(x))
,

σ41(ρ0(x)) :=
γ0(x)‖K‖22

[1 + α(1 + γ0(x))]2
,

σ42(ρ0(x)) :=
γ0(x)‖K‖22

[1 + 2α(1 + γ0(x))]2
,

σ43(ρ0(x)) :=
γ0(x)‖K‖22

[1− ρ0(x) + 2α(1 + γ0(x))]2
,

σ44(ρ0(x)) :=
2γ2

0(x)‖K‖22
[1 + 2α(1 + γ0(x))]3

.

Now, apply a Taylor series expansion of the estimating equations f1(γ̂n(x), δ̂n(x); ρ0(x)) = 0 and
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f2(γ̂n(x), δ̂n(x); ρ0(x)) = 0 around (γ0(x), 0). This gives

0 = f1(γ0(x), 0; ρ0(x)) + f11(γ0(x), 0; ρ0(x))(γ̂n(x)− γ0(x)) + f12(γ0(x), 0; ρ0(x))δ̂n(x)

+
1

2

{
f111(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))2 + f122(γ̆n(x), δ̆n(x); ρ0(x))δ̂2

n(x)

+2f112(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))δ̂n(x)
}
,

0 = f2(γ0(x), 0; ρ0(x)) + f21(γ0(x), 0; ρ0(x))(γ̂n(x)− γ0(x)) + f22(γ0(x), 0; ρ0(x))δ̂n(x)

+
1

2

{
f211(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))2 + f222(γ̆n(x), δ̆n(x); ρ0(x))δ̂2

n(x)

+2f122(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))δ̂n(x)
}
,

where (γ̆n(x), δ̆n(x)) is a point on the line segment connecting (γ̂n(x), δ̂n(x)) and (γ0(x), 0). A

straightforward rearrangement gives a set of random equations where interest is in rn(γ̂n(x) −

γ0(x)) and rnδ̂n(x):

−rn

 f1(γ0(x), 0; ρ0(x))

f2(γ0(x), 0; ρ0(x))

 =

 f̃11(γ0(x), 0; ρ0(x)) f̃12(γ0(x), 0; ρ0(x))

f̃12(γ0(x), 0; ρ0(x)) f̃22(γ0(x), 0; ρ0(x))

 rn(γ̂n(x)− γ0(x))

rnδ̂n(x)

(A-2)

where

f̃11(γ0(x), 0; ρ0(x)) := f11(γ0(x), 0; ρ0(x)) +
1

2

[
f111(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))

+f112(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)
]
,

f̃12(γ0(x), 0; ρ0(x)) := f12(γ0(x), 0; ρ0(x)) +
1

2

[
f122(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)

+f112(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))
]
,

f̃22(γ0(x), 0; ρ0(x)) := f22(γ0(x), 0; ρ0(x)) +
1

2

[
f222(γ̆n(x), δ̆n(x); ρ0(x))δ̂n(x)

+f122(γ̆n(x), δ̆n(x); ρ0(x))(γ̂n(x)− γ0(x))
]
.

Now, introduce

B(ρ0(x)) := γ−α−2
0 (x)

 b11(ρ0(x)) γ0(x) 0 −1

b21(ρ0(x)) γ0(x) −γ0(x)(1− ρ0(x)) 0

 ,
with

b11(ρ0(x)) := − αγ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))]2
,

b21(ρ0(x)) := − αγ0(x)ρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1− ρ0(x) + α(1 + γ0(x))]
,
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so that

rn

 f1(γ0(x), 0; ρ0(x))

f2(γ0(x), 0; ρ0(x))

 = B(ρ0(x))An(ρ0(x)),

is leading to the weak convergence

rn

 f1(γ0(x), 0; ρ0(x))

f2(γ0(x), 0; ρ0(x))

 N2(λ
√
b(x)B(ρ0(x))D,B(ρ0(x))Σ(ρ0(x))B′(ρ0(x))).

Concerning the terms f̃st(γ0(x), 0; ρ0(x)), s, t = 1, 2, we have by Lemmas 1 and 2, Theorem

1, the consistency of (γ̂n(x), δ̂n(x)) and because |fstu(γ, δ; ρ0(x))| ≤ Mstu(V ), in some open

neighborhood of (γ0(x), 0), with Mstu(V ) = OP(1), s, t, u = 1, 2, that f̃st(γ0(x), 0; ρ0(x))
P→

f∗st(γ0(x), 0; ρ0(x)), s, t = 1, 2. Let

C(ρ0(x)) :=

 f∗11(γ0(x), 0; ρ0(x)) f∗12(γ0(x), 0; ρ0(x))

f∗12(γ0(x), 0; ρ0(x)) f∗22(γ0(x), 0; ρ0(x))

 .
From the proof of the consistency, we know that C(ρ0(x)) is a positive definite matrix, and thus

invertible. Then, according to Lemma 5.2 in Chapter 6 of Lehmann and Casella (1998), for the

solution of the system of equations (A-2), we have the following convergence

rn

 γ̂n(x)− γ0(x)

δ̂n(x)

  N2(−λ
√
b(x)C−1(ρ0(x))B(ρ0(x))D,

C−1(ρ0(x))B(ρ0(x))Σ(ρ0(x))B′(ρ0(x))C−1(ρ0(x))).

After tedious calculations one can show that −C−1(ρ0(x))B(ρ0(x))D = [0, 1]′. Taking into

account that rnδ(un;x)→ λ
√
b(x), the theorem follows.

Proof of Proposition 1

The arguments needed to prove the consistency and asymptotic normality are the same as those

used in the proofs of Theorem 2 and 3, and therefore we limit ourselves to giving some comments

to the main ideas. Concerning the consistency one works with ∆̃α(γ, δ; ρ̃(x)) and its derivatives.

Again by Lemmas 1, 2 and Theorem 1 we have that fs(γ0(x), 0; ρ̃(x))
P→ 0, s = 1, 2, and that
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fst(γ0(x), 0; ρ̃(x))
P→ f∗st(γ0(x), 0; ρ̃(x)), s, t = 1, 2, leading to the results for S1 and S2. Also for

the third order derivatives we can use the same arguments. This establishes the existence and

the consistency. To prove the asymptotic normality one uses the same line of argumentation

as in Theorem 3, with ρ0(x) replaced by ρ̃(x) in Ak,n(ρ0(x)), Σ(ρ0(x)), B(ρ0(x)) and C(ρ0(x)),

and replacing the vector D by D̃, having as elements D̃1 := D1, D̃2 := D2, D̃4 := D4 and

D̃3 := − [α(1 + γ0(x))− ρ̃(x)]ρ0(x)

γ0(x)[1− ρ̃(x) + α(1 + γ0(x))][1− ρ0(x)− ρ̃(x) + α(1 + γ0(x))]
.

Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorems 2 and 3, and therefore we only give the

big lines of argument.

Concerning the existence and consistency of (γ̂(x), δ̂n(x)) as estimators for (γ0(x), 0), we have

that by the consistency of ρ̂n(x) and conditioning on the event ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x) + ε) for

some ε > 0, it is sufficient to show that

P(γ0(x),0)(∆̃α(γ0(x), 0; ρ̂n(x)) < ∆̃α(γ, δ; ρ̂n(x))

for all (γ, δ) on the surface of Qr | ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x) + ε))→ 1.

First make a Taylor series expansion as in (A-1), though now with ρ0(x) replaced by ρ̂n(x).

Assume that (−(α(1 + γ0(x))− (ρ0(x)− ε))/γ0(x),−(α(1 + γ0(x))− (ρ0(x) + ε))/γ0(x)) ∈ [S, 0].

Concerning S1, we have that f1(γ0(x), 0; ρ̂n(x)) does not depend on ρ̂n(x) and therefore obviously
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f1(γ0, 0; ρ̂n(x))
P→ 0, whereas for f2(γ0, 0; ρ̂n(x)) we write

f2(γ0(x), 0; ρ̂n(x))

= γ−α−1
0 (x)

[
− αρ̂n(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1− ρ̂n(x) + α(1 + γ0(x))]

Tn(K, 0, 0;x)

F̄ (un;x)b(x)

+
Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

−(1− ρ̂n(x))

(
Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− 1

1− ρ0(x) + α(1 + γ0(x))

)
−(1− ρ̂n(x))

(
Tn(K,−(α(1 + γ0(x))− ρ̂n(x))/γ0(x), 0;x)

F̄ (un;x)b(x)
− Tn(K,−(α(1 + γ0(x))− ρ0(x))/γ0(x), 0;x)

F̄ (un;x)b(x)

)
− 1− ρ̂n(x)

1− ρ0(x) + α(1 + γ0(x))

]
=: γα−1

0 (x) [T1 + T2 + T3 + T4 + T5] .

Now use Lemmas 1, 2 and Theorem 1 to obtain

T1
P→ − αρ0(x)(1 + γ0(x))

[1 + α(1 + γ0(x))][1− ρ0(x) + α(1 + γ0(x))]
,

T2
P→ 1

1 + α(1 + γ0(x))
,

T3
P→ 0,

|T4| ≤
1− ρ̂n(x)

γ0(x)
|ρ̂n(x)− ρ0(x)| Tn(K, 0, 1;x)

F̄ (un;x)b(x)
= oP(1),

T5
P→ − 1− ρ0(x)

1− ρ0(x) + α(1 + γ0(x))
.

Combining these results gives that f2(γ0, 0; ρ̂n(x))
P→ 0.

For S2, write

2S2 = f∗11(γ0(x), 0; ρ0(x))(γ − γ0(x))2 + f∗22(γ0(x), 0; ρ0(x))δ2

+2f∗12(γ0(x), 0; ρ0(x))(γ − γ0(x))δ

+[f11(γ0(x), 0; ρ̂n(x))− f∗11(γ0(x), 0; ρ0(x))](γ − γ0(x))2

+[f22(γ0(x), 0; ρ̂n(x))− f∗22(γ0(x), 0; ρ0(x))]δ2

+2[f12(γ0(x), 0; ρ̂n(x))− f∗12(γ0(x), 0; ρ0(x))](γ − γ0(x))δ.

By arguments similar to those used above when treating f2(γ0(x), 0; ρ̂n(x)), we have that

fst(γ0(x), 0; ρ̂n(x))
P→ f∗st(γ0(x), 0; ρ0(x)), s, t = 1, 2, and hence we can proceed as in the proof
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of Theorem 2. Finally, conditionally on ρ̂n(x) ∈ (ρ0(x)− ε, ρ0(x) + ε), also the argument for the

third order derivatives holds and the proof for the existence and consistency can be completed

in the same way as in the proof of Theorem 2.

The proof of asymptotic normality proceeds along the lines of the proof of Theorem 3. To start

we make a Taylor series expansion of the estimating equations, leading to (A-2), though with

ρ0(x) replaced by ρ̂n(x). Since P(ρ̂n(x) ∈ (ρ0(x) − ε, ρ0(x) + ε)) → 1, we have that (by an

appropriate choice of S in Corollary 1)

Ak,n(ρ̂n(x)) N4(λ
√
b(x)D,Σ(ρ0(x))),

and hence

rn

 f1(γ0(x), 0; ρ̂n(x))

f2(γ0(x), 0; ρ̂n(x))

 = B(ρ̂n(x))Ak,n(ρ̂n(x))

 N2(λ
√
b(x)B(ρ0(x))D,B(ρ0(x))Σ(ρ0(x))B′(ρ0(x))).

The rest of the proof is identical to that of Theorem 3.
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