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Abstract

We consider the local estimation of the stable tail dependence function when a random co-
variate is observed together with the variables of main interest. Our estimator is a weighted
version of the empirical estimator adapted to the covariate framework. We provide the main
asymptotic properties of our estimator, when properly normalized, in particular the conver-
gence of the empirical process towards a tight centered Gaussian process. The finite sample
performance of our estimator is illustrated on a small simulation study and on a dataset of
air pollution measurements.

Keywords: conditional stable tail dependence function, empirical process, stochastic con-
vergence.

Running headline: Local estimation of tail dependence

1 Introduction

A central topic in multivariate extreme value statistics is the estimation of the extremal depen-

dence between two or more random variables. Ledford & Tawn (1997) introduced the coefficient



of tail dependence as a summary measure of extremal dependence, and also proposed an esti-
mator for this parameter. See also Peng (1999), Beirlant & Vandewalle (2002), Beirlant et al.
(2011), Goegebeur & Guillou (2013), Dutang et al. (2014) for alternative estimators of this
parameter. Other examples of summary dependence measures for extremes can be found in
Coles et al. (1999). As an alternative to these summary measures, one can work with functions
that give a complete characterisation of the extremal dependence, like the spectral distribution
function (Einmahl et al., 1997), the Pickands dependence function (Pickands, 1981) or the stable
tail dependence function (Huang, 1992). These functions can be seen as the analogues of copulas

in classical statistics. In the present paper we focus on the stable tail dependence function.

For any arbitrary dimension d, let (Y1), ... Y(®) be a multivariate random vector with contin-
uous marginal distribution functions Fi, ..., F;. The stable tail dependence function is defined

foreach y; e Ry, i=1,...,d, as

lim ¢P (1 — ROy <tly or ... or 1—Fy(Y@W) < t_lyd) = L(y1,-.-,Yd),

t—00

provided that this limit exists, which can be rewritten as

lim ¢t[1—F (P (1=t ), P (U=t a)) | = Ly - wa),

where F' is the multivariate distribution function of the vector (Y1, ... y(@),

Now, consider a random sample of size n drawn from F' and an intermediate sequence k = k,,, i.e.

k — oo as n — oo with k/n — 0. Let us denote y = (y1,...,¥yq) a vector of the positive quadrant

Ri and Yk(]rz the k—th order statistic among n realisations of the margins Y9, j = 1,...,d.

The empirical estimator of L is then given by

~

1 n
Li(y) = % Z ]l{YZ.(”zY(1> or .. or Y¥>y@
i=1

n—[ky1]+1,n [hygl+1,n)

The asymptotic behaviour of this estimator was first studied by Huang (1992); see also Drees &
Huang (1998), de Haan & Ferreira (2006) and Biicher et al. (2014). We also refer to Peng (2010),
Fougeres et al. (2015), Beirlant et al. (2016) and Escobar-Bach et al. (2017b) where alternative

estimators for L were introduced. In the present paper we extend the empirical estimator to the



situation where we observe a random covariate X together with the variables of main interest
(Y(l), ey Y(d)). We consider thus a regression problem where we want to describe the extremal
dependence between the random variables (Y(l), .. ,Y(d)) given some observed value x for the

covariate X. Our approach is nonparametric and based on local estimation in the covariate space.

In the univariate context there is a quite extensive literature on estimation of tail parameters in
presence of random covariates. In the framework of heavy-tailed distributions, nonparametric
kernel methods were introduced by Daouia et al. (2011), who used a fixed number of extreme
conditional quantile estimators to estimate the conditional extreme value index, for instance
using the Hill (Hill, 1975) and Pickands (Pickands, 1975) estimators, whereas Goegebeur et al.
(2014b) developed a nonparametric and asymptotically unbiased estimator based on weighted
exceedances over a high threshold. The extension of this regression estimation of tail param-
eters to the full max-domain of attraction, has been considered in Daouia et al. (2013), who
generalized Daouia et al. (2011), and also by Stupfler (2013) and Goegebeur et al. (2014a)
where an adjustment of the moment estimator, originally proposed by Dekkers et al. (1989),
to this setting of local estimation has been proposed. On the contrary, the development of
extreme value methodology for regression problems with a multivariate response vector is still
in its infancy. In de Carvalho & Davison (2014), a procedure was introduced to infer about
extremal dependence in the presence of qualitative independent variables, that is, an ANOVA-
type setting. Portier & Segers (2017) considered the estimation of a bivariate extreme value
distribution under the simplifying assumption that the dependence between YV and Y does
not depend on the value taken by the covariate, so that the dependence of the model on the
covariates is only through the marginal distributions. Escobar-Bach et al. (2017a) studied the
robust estimation of the conditional Pickands dependence function using the minimum density
power divergence criterion, adapted to the context of local estimation. However, in that paper
it is assumed that a random sample from a conditional bivariate extreme value distribution is
available. In the present paper we relax this assumption and introduce a local estimator for the
conditional stable tail dependence function assuming only that we have data available from a

distribution with a dependence structure converging to that of an extreme value distribution.



Thus, we extend the above framework to the case where the vector (Y1), ... Y (@) is recorded
along with a random covariate X € RP. In that context, the stable tail dependence function
together with the marginal distribution functions depend on the covariate X. In the sequel, for
j=1,...,d, we denote by F}j(.|z), the continuous conditional distribution function of Y () given
X =z and L(.|z) the conditional stable tail dependence function defined as

lim P (1 —FREYOIX) <ty or ... or 1 — Fy(YDIX) <t lyy | X = ac) = L(ys, ..., yalz). (1)

t—00

We establish the weak convergence of the empirical process of the properly normalized estima-
tor using Donsker results for changing function classes and arguments based on the theory of
Vapnik-Clervonenkis classes (VC-classes). To the best of our knowledge this type of regression

problem has not been considered in the multivariate extreme value literature.

The remainder of the paper is organised as follows. In the next section we introduce the local
estimator for the conditional stable tail dependence function and study its asymptotic proper-
ties. In first instance we assume that the marginal conditional distribution functions are known,
whereafter this assumption is removed and the unknown marginal conditional distribution func-
tions are estimated locally using a kernel method. Finally, in Section 3, we illustrate the finite
sample behaviour of our estimator with a small simulation study and on a dataset of air pollution

measurements. All the proofs of the results are collected in the Appendix.

2 Estimator and asymptotic properties

Denote (Y, X) := (YD, ... Y@ X) arandom vector satisfying (1), and let (Y1, X1),..., (Yn, X,),
be independent copies of (Y, X), where X € R? has density function f. As is usual in the ex-
treme value context, we consider an intermediate sequence k = k,, i.e. K — 00 as n — o0 with
k/n — 0. Let us denote y := (y1,...,yq) a vector of the positive quadrant Ri. The event Ay,

is defined for any ¢t > 0 and y € Ri as

Ay = {1 — Fl(Y(l) |1X) < tlyior ... orl— Fd(Y(d) |1X) < tilyd} ,



and Agg denotes its analogue for observation (Y;, X;), ¢ = 1,...,n. The conditional empirical

estimator is then given for any = € RP by

fk(y\fﬁ) =

| =
D=

Il
—_

Ky (z — Xi) ﬂ{lfFlm“MXi)s%yl or ... or 1-Fy(v, V| X,)< & ya}
A

Kp(r—X) 1,6 (2)

n/k,y

Il
| =
D=

Il
—_

7
where K, (.) := K(./h)/hP with K a joint density function and h = h,, is a positive non-random

sequence satisfying h, — 0 as n — 0.

The aim of the paper is to derive stochastic convergence results for empirical processes based on
(2), with y € [0,T]?, T > 0, but with the covariate argument fixed, meaning that we will focus
our study only around one reference position zy € Int(Sx), the interior of the support Sx of f.
In order to derive the asymptotic behaviour of fk(y\xo), we need to introduce some conditions
mentioned below and well-known in the extreme value framework. Let ||.|| be some norm on RP,

and denote by By(r) the closed ball with respect to |.| centered at = and radius r > 0.

First order condition: The limit in (1) exists for all x € Sx and y € Ri, and the convergence

is uniform on [0, T]% x By, (r) for any T >0 and a r > 0.

Second order condition: For any x € Sx there exist a positive function o, such that o, (t) — 0
as t — o0 and a non null function M, such that for all y € R‘i

1
lim ——

t—o0 (g (t) (P (At’y

X =z)— L(ylr)} = Mx(y),

uniformly on [0, T]% x By, (r) for any T >0 and a r > 0.

Due to the regression context, we need some Holder-type conditions.

Assumption (D). There exist My > 0 and ny > 0 such that |f(x) — f(2)] < My|x — 2|7, for
all (z,2z) € Sx x Sx.

Assumption (£). There exist My, > 0 and ng, > 0 such that |L(y|z) — L(y|z)| < M|z — z|"=,
for all (z,2) € By (1) X Byy(r), r >0, and y € [0,T]4, T > 0.



Assumption (A). There exist M, > 0 and no > 0 such that |, (t) — ay(t)| < Mu|z — 2|,
for all (x,z) € Sx x Sx and t > 0.

Also a usual condition is assumed on the kernel function K.

Assumption (K;). K is a bounded density function on RP with support Sk included in the

unit ball of RP with respect to the norm |.|.

2.1 Marginal conditional distributions known

In this section, we restrict our interest to the case where the marginal conditional distribution
functions Fj(.|z), j = 1,...,d, are known. We start by showing the convergence in probability

of our main statistic under some weak assumptions.

Lemma 2.1 Lety € Ri. Assume the first order condition, (K1) and that the functions f and
x — L(ylx) are continuous at xo € Int(Sx) non-empty. If for n — oo we have k — oo and

h — 0 in such a way that k/n — 0 and kh? — oo, then for xy such that f(xg) > 0, we have
-~ P
Ty (ylzwo) — f(z0)L(ylzo)-

This result indicates that in order to estimate L(y|zg), the statistic fk(y|:1:0) will need to be
divided by an estimator for f(zp). Our main objective in this section is to show the weak

convergence of the stochastic process

- ( Tr(ylzo) n
{\/ﬁ (;/M) - L(y|x0) — O, (E) Mxo(y>> y YE [OvT]d} ) (3)

for any T > 0, where fn is the usual kernel density function estimator for f:

SRS

fn($) = ZK}L(JB—XZ'),
=1

see e.g. Parzen (1962). Note that for convenience we use here for ﬁb the same kernel function

K and bandwidth parameter h as for T, (y|zo).

As a preliminary step we deduce the covariance structure of the limiting process (apart from

the scaling by l/fn(acg)).



- d
Lemma 2.2 Under the assumptions of Lemma 2.1, we have for any y,y’ € RY

khP Cov (:Fk(y|x0),:fk(y’|xo)> — F(ao)| K12 (L(ylao) + Ly |z0) — Ly v ¢ |20)) , as n — oo.
Here, y vy := (y1 vV Y1, 42V Yo, -, ¥a v yy) and | K[z = /{g K?(u)du.

We derive now the weak convergence of (3) using Donsker type results for empirical processes
with changing function classes and arguments based on the theory of V' (C-classes, as formulated
in van der Vaart & Wellner (1996). These allow us to obtain weak convergence results by mainly
focusing on the class of functions involved in our estimator. It should be mentioned that our
main weak convergence results are derived in the usual Skorohod space, here D([0, T|%) equipped

with the sup norm |.|q.

Theorem 2.1 Assume the second order condition, (D), (L), (A), (K1), and (z,y) — My(y)
being continuous on By, (r) x [0, T]?, with By, (r)  Sx. Consider sequences k — o0 and h — 0

as n — o, in such a way that k/n — 0, kh? — oo and
VERPRRO02) 0 and VEhPog, (n/k) — g € Ry

Then, for xo such that f(xo) > 0, the process

5 (Tulylzo) n
{m (m ~ Liylo) — s, (7)) M%(y)) e [o,T]d} ,

weakly converges in D([0,T]?) towards a tight centered Gaussian process {B,,y € [0,T]%}, for

any T > 0, with covariance structure given by

|55

Cov (By,By/) = F(o)

(L(ylwo) + L(y'|z0) — Ly v y'|z0)) ,
where y,y' € [0,T]%.

2.2 Marginal conditional distributions unknown

In this section, we consider the general framework where all F;(.|z), j = 1,...,d, are unknown

conditional distribution functions. We want to mimic what has been done in the previous section



in case where these conditional distributions are assumed to be known. To this aim, we consider

the random vectors
~ ~ ~ d .
(Fn,l(Yi(”\Xi),Fn72(2(2)|Xi),. LBV DIX), X ) i=1,....m,

for suitable estimators ﬁn,j of Fj, j =1,...,d. Then, similarly as in Section 2.1, we study the

statistic

PT\H

n
T Z (ro — X)) 1, 4 ~ .
(ylzo) ~ 0 {1—Fn,1(16“’|X1-)<%y1 or .. o1 1= (V¥ X )< £y}

Our final goal is still the same, that is the weak convergence of the stochastic process

%@M<%@mw—me%ﬂ%JZﬁ%Mw>wemTV}

fn(ﬂfo)

The idea will be to decompose the process {\/ khp (Tk - E[f’k]) (y|zo),y € [0, T]d} into the two

terms
{Vine (T = EI74]) (vlwo) + vVEh? ([T = T - BIT ~ ) (wlao)oy € 0,71} . (4)

The first term in the above display can be dealt with using the results of Section 2.1 whereas
we have to show that the second term is uniformly negligible. To achieve this objective, let
us introduce the following empirical kernel estimator of the unknown conditional distribution

functions

ﬁ‘ Z?:l Kc(l‘ - Xi)]l{Yiwgy} ] ) p
n,](y‘l') T Z;’L:l KC(QS‘ _X’L) y J = L4,

where ¢ := ¢, is a positive non-random sequence satisfying ¢, — 0 as n — o0. Here we kept the

same kernel K as for T, 1(y|zo), but of course any other kernel function can be used.

We need to impose again some assumptions, in particular a Hoélder-type condition on each
marginal conditional distribution function Fj similar to the one imposed on the conditional
stable tail dependence function.

Assumption (F,,). There evist Mg, > 0 and ng, > 0 such that |Fj(y|lr) — Fj(ylz)] <
Mp, ||z — 2|, for ally € R, all (x,2) € Sx x Sx and j =1,....d.



Concerning the kernel K a stronger assumption than (K1) is needed.

Assumption (K3). K satisfies Assumption (K1), there exists 6,m > 0 such that Bo(d) < Sk
and K(u) = m for all u € By(d), and K belongs to the linear span (the set of finite linear
combinations) of functions k = 0 satisfying the following property: the subgraph of k, {(s,u) :
k(s) = u}, can be represented as a finite number of Boolean operations among sets of the form
{(s,u) : q(s,u) = p(u)}, where q is a polynomial on RP x R and ¢ is an arbitrary real function.
This assumption has already been used in Giné & Guillou (2002) and Escobar-Bach et al.
(2017a). In particular, we refer to the latter to enunciate the following lemma that measures the
discrepancy between the conditional distribution function Fj and its empirical kernel version
Foj.

Lemma 2.3 Assume that there exists b > 0 such that f(x) = b,Yx € Sx < RP, f is bounded,
and (IC2) and (Fy,) hold. Consider a sequence c tending to 0 as n — oo such that for some q¢ > 1

| log [
ncP — 0

Also assume that there exists an € > 0 such that for n sufficiently large

1nf A({ue By(l):z —cue Sx}) > ¢, (5)
z€S X
where \ denotes the Lebesque measure. Then for any 0 <n < min(ng,,...,nE,), we have

~ | log |4 .
sup | Fnj(ylz) — F](y\x)‘ = op | max AV, forg=1,...,d.
(y,2)ER x Sx ncp

This rate of convergence allows us to study the second term in (4) and to show that it is uniformly

negligible.

Theorem 2.2 Assume that there ezists b > 0 such that f(x) = b,Yz € Sx < RP, f is bounded,
(K2), (Fm), (D), the first order condition and condition (5), and also for any y € [0,T]? that
x — L(y|z) continuous at xo € Int(Sx) non-empty. Consider sequences k — o, h — 0 and

¢ — 0 asn — o, such that k/n — 0, kh? — o, and with for some ¢ > 1 and 0 < n <

/ [ hp /1 q
=n h — max ( |Og§| )—»0, as n — 0.

9

min(ng,, ..., Nx,)



Then

sup Vkhp Tk — f’k —E [T’k — fk]‘ (y|:L’0) = Op(l).
ye[0,7]¢

Finally, the decomposition (4) combined with Theorem 2.2 and the results from Section 2.1,

yield the desired final result of this paper.

Theorem 2.3 Assume the second order condition, (z,y) — My(y) continuous on Bg,(r) x
[0,T]?, with B,,(r)  Sx, and that there exists b > 0 with f(x) > b,Yx € Sx < RP, f bounded.
Under (D), (L), (A), (Fm), (K2) and condition (5), consider sequences k — oo, h — 0 and

¢ — 0 as n — o, such that k/n — 0, kh? — o with
VERphmRO L) 0 N ERPag, (n/k) — Mgy € Ry,

and for some ¢ > 1 and 0 <n < min(ng,...,nr,)

[hP / q
n max( |10gc|,cn> — 0.
k ncP

Then, the process

5 (Tilylzo) n
{m (u ~ Liylo) — s, (7)) M%(y)) e [o,T]d} ,

weakly converges in D([0,T]?) towards a tight centered Gaussian process {B,,y € [0,T]%}, for

any T > 0, with covariance structure given in Theorem 2.1.

3 Simulation and real data analysis

3.1 A small simulation study

Our aim in this section is to illustrate the finite sample behaviour of our estimator

= Ty (y|z)
L T) = —
k(ylz) )

with a small simulation study. We focus on dimension d = 2 and we consider the two following

models:

10



e Model 1: We consider the bivariate Student distribution with density function

162 226 2
thYz(yl,yg) = C <1 + Y1 Y1Yy2 + Y35

2T v

_v+2
2
) ) (yhy?) ER27

and 0 being the Pearson correlation coefficient. The stable tail dependence function can be

described as

Vi—o? Vi-6?

where F}, 1 is the distribution function of the univariate Student distribution with v+1 degrees of

/v _ 0 1/v _ 0
L(y1,y2]0) = y2Fot1 ((yz/yﬁvy + 1) +y1Fq <(yl/y2)\/v 1) ,

freedom. Asymptotic independence can be reached for § = —1 and complete positive dependence
for 6 = 1. We set # = X, where X is uniformly distributed on [0, 1]. This model satisfies the

second order condition with

» 1/v _ 9 5 1/v _ 0
My(y1,y2) = C yg/ +1Fu+3 (%VVJr 3) + yf/ +1Fy+3 (%\/u 3)] ;
2/v
o At () \Y
2(v +2) r(“H) ’
ap(t) = 77

Moreover, one could check that the uniform property in the first and second order conditions are
verified since we have continuity of the involved functions. The model satisfies also conditions
(D), (L), (A) and (Fp,). In the simulations we set v = 1.

e Model 2: We consider a particular case of the Archimax bivariate copulas introduced in

Capéraa et al. (2000) and also mentioned in Fougeres et al. (2015), namely:

_ _ -1
C(yl)y2|x):{1+L(y11_17y21_1‘$)} )

where we use for L the asymmetric logistic stable tail dependence function defined by

)

o 0,10
L(y1,y2lr) = (1 —t1)y1 + (1 —ta)ya + [(tlyl) * + (t2y2) ””]

where 0 < t1,t2 < 1, and 0, = min(1/z,100), with the covariate X uniformly distributed on

[0,1]. The marginal distributions are taken to be unit Fréchet. This model satisfies our second

11



order condition with

M, (y1,y2) = yioiL(yr,ylz) + y302L(y1, yolz) — L (y1, y2|z),

az(t) = t7h

and also satisfies (D), (£), (A) and (F;;,). In the simulations, different values for the pair (1, t2)
have been tried but the results seem to be not too much influenced by them, thus we exhibit
only the results in case (t1,t2) = (0.4,0.6) which corresponds to an asymmetric tail dependence
function.

To compute our estimator Ly, two sequences h and ¢ have to be chosen. Concerning ¢, we can
use the following cross validation criterion introduced by Yao (1999), implemented by Gannoun
et al. (2002), and already used in an extreme value context by Daouia et al. (2011, 2013) or
Goegebeur et al. (2015):

n n 2
= argman Z { O <r®) — P iy (W)X )] , j=12,

ceCy

ZZ:l,k#i Ke(z — Xk)]l{yk(j)gy}

. We select
ZZ:Lk;ﬁi Ke(z — Xk)

where C, is a grid of values of ¢ and ﬁ’ny,m (y|z) =

[h? [|logcl|?
nA | — —0
k ncP

by taking h = c(k/n)Y?|logc|~¢, where £p > ¢ and ¢ := min(cy, ¢z).

the sequence h from the condition

For each distribution, we simulate N = 500 samples of size n = 1000, and we consider sev-
eral positions {y; := (¢/10,1 — ¢/10); ¢t = 1,...,9}. Since all stable tail dependence functions
satisfy max(¢,1 —t) < L(t,1 —t) < 1, all the estimators have been corrected so that they
satisfy these bounds. However, the estimators have not been forced to be convex although
this could have been done for instance by using a constrained spline smoothing method (Hall
& Tajvidi, 2000), or a projection technique (Fils-Villetard et al., 2008). In all the settings,
Cy = {0.06,0.12,0.18,0.24,0.3} and £ = 1.1 are used as chosen in Escobar-Bach et al. (2017a).

An extensive simulation study has also indicated that these choices seem to give always reason-

12



able results. Concerning the kernel, each time we use the bi-quadratic function

15
K(z) := E(l - :v2)2]1[,1,1] ().
As a qualitative measure of the efficiency over the different positions {y;,t = 1,...,9}, we define

the absolute bias and the mean squared error (MSE) respectively as follows

9 N
: 1 7l
Abias(z, k) = Q—NZ ’L;(C)(yt‘ﬂf)—L(th)‘
t=1i=1
| QN . 2
MSE(z, ) = =303 (T (o) — Lwle))

-+
Il
—_
-
Il
—

Figures 1-3 (respectively Figures 4-6) represent the sample means in case of Model 1 (respectively
Model 2), based on N samples of size n, of our estimator Ly(y|z) as a function of k. Each of
these figures shows the behaviour of our estimator at the positions y € {y;,t = 1,...,9} for a
given value of the covariate (z = 0.2, 0.5 and 0.8, respectively). Based on these simulations, we
can conclude that in general, our estimator behaves well for not too large values of k with a
good proximity to the true value, while some bias appears for k large, which can be expected
from our theoretical results, since for k large a;(n/k) is not necessary negligible. The estimates
obtained for the asymmetric logistic model show more bias than those for the bivariate Student
distribution, since «,(t) converges faster to zero as t — oo for the latter. Indeed, for the bivariate
Student distribution with v = 1 we have a,(t) = t~2 while a,(t) = t~! for the asymmetric
logistic distribution. From the figures it also seems that the estimation is more difficult for y
close to the diagonal.

In Figures 7 and 8 we show the summary performance measures Abias and MSE for Model 1
and Model 2, respectively, as a function of k for each of the covariate positions. As is clear from
these figures, the performance measures do not critically depend on the position in the covariate
space for k not too large. The results also seem to indicate that the estimator performs better
for stronger dependence than for weaker dependence.

Insert Figures 1-8 here
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3.2 Application to air pollution data

In this section, the proposed methodology is applied to a dataset of air pollution measurements.
Being able to analyse the dependence between temperature and ozone concentration is of pri-
mary importance in order to identify population health effects of high ozone concentration and
extreme temperature. The dataset contains daily measurements on, among others, maximum
temperature and ground level ozone concentration, for the time period 1999 to 2013, collected at
stations spread over the U.S. by the United States Environmental Protection Agency (EPA). It
is publicly available at https://aqsdrl.epa.gov/agsweb/aqstmp/airdata/download_files.html. We
estimate the stable tail dependence function conditional on time and location, where the latter
is expressed by latitude and longitude. The estimation method is the same as the one described
in Section 3.1 apart from the dimension of the covariate space, namely here p = 3 which implies
¢ = 1.1/3. We use the same grid values C, for the cross-validation, after standardising the
covariates to the interval [0, 1]. As kernel function K* we use the following generalisation of the
bi-quadratic kernel K :

3

K*(x1,x9,23) = HK(wZ),
i=1

where 1, x3, x3, refer to the covariates time, latitude and longitude, respectively, in standard-

ised form. Note that K* has as support the unit ball with respect to the max-norm on R3.

We report here only the results at two different time points: January 15, 2007 and June 15,
2007 in California. California has one of the largest economies in the world and as such there is
a high emission of air pollutants. First, Figure 9 represents the stations in California as markers
with different colors corresponding to the value of the estimates median{Lj(0.5,0.5|x),k =
n/4,...,n/2} of L(0.5,0.5|z). The range over which the median is computed can be motivated
from the simulations, see e.g. Figures 1 till 6. Clearly, the extremal dependence between daily
maximum temperature and ground level ozone concentration varies a lot across measurement
stations. This could be explained by the fact that the climate of California varies widely, from
hot desert to subarctic, depending on the location. As is also clear from Figure 9, the extremal

dependence also varies over time.

14



Insert Figure 9 here
In order to get a better idea of the extremal dependence between temperature and ozone,
we show in Figure 10 the time plot of the estimates of the conditional extremal coefficient
n(z) := 2 x L(0.5,0.5|x) € [1,2] at two specific stations, Fresno and Los Angeles. This coef-
ficient is often used in the literature as a summary measure of the extremal dependence, with
perfect dependence corresponding to the value 1 and independence to the value 2. These two
cities exhibit a different extremal dependence throughout the year. Indeed, for Fresno the ex-
tremal dependence is strong in the winter months but becomes weaker in summer, while the
opposite holds for Los Angeles. Note that these time plots exhibit quite some variability in the
estimate of the extremal coefficient. This volatile pattern could be smoothed out by allowing
e.g. a different bandwidth parameter for each covariate, which would result in a more flexible
estimation procedure. To get a more detailed picture of the extremal dependence we show in
Figure 11 the estimate median{Ly(t,1 — t|z),k = n/4,...,n/2} of the Pickands dependence
function for the cities Fresno (top row) and Los Angeles (bottom row) on January 15, 2007
(first column) and June 15, 2007 (second column). In Los Angeles the extremal dependence is
stronger in summer than in spring and winter, which corresponds to the typical pattern (see e.g.
Mahmud et al., 2008). Fresno deviates from this typical pattern, and the two variables are close
to asymptotic independence during summer. This could be explained by the fact that ozone
formation seems to be suppressed at extremely high temperatures, say above 312 Kelvin, due to
different chemical and biophysical feedback mechanisms, and such temperature conditions are
not unusual for the Central Valley of California; see Steiner et al. (2010).
Insert Figures 10 & 11 here
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A

Proofs

A.1 Proof of Lemma 2.1

In order to prove Lemma 2.1, we only need to verify that

E [fk(y\xo)] — f(zo)L(y|zp) and  Var (fk(y|mo)> —0 asn— o0.

19



We have

E [ﬂ(mxo)] - . K(u)%]P’ (Apsiy |X = 20 — hu) f(wo — hu)du
= . K(u)L(y|zo — hu) f(zo — hu)du
+ K (%IP’ (Apjpoy |X = 20 — hut) — Liylzo — hu)) F(zo — hu)du. (A1)

Since u € Sk, for n large enough, using the continuity of f and L at z¢ € Int(Sx) non-empty,
we have boundedness in a neighborhood of zy and thus

sup L(y|zo — hu) < 400 and sup f(zg — hu) < +o0,

’LLESK uESK
and by the first order condition

n
sup ’EP (An/k,y | X =29 — hu) — L(y|lzo — hu)| — 0,
uGSK

as n — 0.

Note that { K = 1, and hence by Lebesgue’s dominated convergence theorem, we obtain, for

n — o,
LK K (w)L(ylzo — hu) f(zo — hu)du — (w0 L(ylao).
and
K (u) (%IP‘ (Apjpy | X = 20 — hat) — L(ylarg — hu)) (2o — hu)du — 0,

Sk
implying the first statement.
Next,

Var (fk(y\ffo))

- % {h_p . K2(U)%P (Apjioy | X = 2o — hu) f(zo — hu)du} — % (f(20)L(y|ao) + o(1))?
- # (1 K5 f (z0) L(y|zo) + o(1)) — % (f(20)L(y|zo) + 0(1))?,

which goes to zero since khP — c0.
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A.2 Proof of Lemma 2.2

Clearly, we have

khPCov (f’k(y|xg),fk(y/|xo)> = . KQ(U)%]P) (Apjiy O Apjiey | X = 20 — hu) f(xo — hu)du
K
k
= WP (f(@0) Llylwo) L{y'|20) + o(1))
= K2(u)ﬁIP’ (Anjiy O Apjiey |X = 20 — hu) f(x0 — hu)du + o(1).

Sk k

Then, we easily deduce that

P (An/lc,y N An/k,y’ |X =Ty — hu) = P (An/k,y |X =Ty — hu) +P (An/k,y’ ‘X =Ty — hu)

- P (An/k,y ) An/k,y’ |X =g — hu) .

Naturally we can describe the sets A, ;. and A,/ as a finite union like for any y € Ri
d k d
Anjiy = U {1 — F(Y J)|X) < yj} =: U An/k,yj,j'

J=1 J=1

Thus, we have
{ n/ky;.g < An/k,yﬂ}

v
LdJ { Fj(YV]X) < %(yj v y})}
0

An/k7y ) An/k,y’

Anfky, vyig T Anfkyvy's
which implies that

P (An/k,y M An/k,y/ ’X = Tg — hu) = P (An/k,y ‘X = Xy — hu) + P (An/k,y’ ‘X =Xy — hu)

— P (An/k,yvy/ |X = Tg — hu) y

and using the same arguments as in the proof of Lemma 2.1, the result follows.
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A.3 Proof of Theorem 2.1
As a first step we consider the process
[V (Ti(ulo) = Fao) [ Llylzo) + oy (7 ) Ma(®)]) . v [0.777).
and study its weak convergence. Based on the decomposition
VI (Tilylo) = flwo) | Lylo) + g () Mao(9)])
= Vi (Tu(yleo) — E| Tiylao)| )
Vi (B | Te(yleo)| = f(wo) [E@lao) + amy (T ) Maa)] )

we have that the main task is to study the weak convergence of the process
{ViR? (Ti(ylao) — B | Tilylao)| ) . we (0,717, (A.2)
since

lim sup VER? [E [ Te(yleo) | = £(a0) [Llzo) + aay () Maa()]] = 0.

P yelo,1]4

Indeed, if we look at (A.1) in the proof of Lemma 2.1

E [fk(y’$0)] = f(xg)L(y‘g;o) +0 (hnf/\nL)
+ Sk K(u) (%P (A iy | X = 20 — hu) — L(y|zo — hu)) f(zo — hu)du,

where the big O term is independent from y. Then

n
EP (Apjpy | X = 20 — hu) — L(ylao — hu)

n "p Ay | X = 20 — hu) — L(y|xo — hu)
— {Mmohu<y>+ [k (e X~ ) = Hli Mmohu@)”,

k zo—hu(n/k)

where

n
—P (A y | X =20 — hu) — L(y|lzo — hu)

k
sup — My —hu(y)
yelo,T]4 Qg —hu(n/k) 0
n
PP (Aujiy X = ) ~ Llyle)
< sup — My (y)| — 0,
ye[0,T]4,2€ By (r) Qg (n/k)
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combining the second order condition with the fact that for n large enough zo — hu € By, (7).

This leads to

n

%IP’ (Apjy | X = 2 — hu) — L(y|zo — hu)
n

= g (7) Magmna(y) +0(1))

= g (3) (Magna) + 0(1) + (g () = o (7)) Mgy + 0(1))

where the little o component doesn’t depend on y. Now,

e according to the Holder condition on « and [juf <1

sSup ‘O‘xthU(t) — Qg ()] < Ma|lhu|™ = O (h"™),

t=0

e by uniform continuity of (x,y) — M, (y) over By, (r) x [0,T]¢

sup | Myo—pu(y) — My (y)] — 0 as n — co.
ye[0,T]4

Hence, we can deduce that

n

%IP’ (Apjy | X = 2o — hu) — L(ylao — hu) = ay, (%) Mz (y) + oy (%) o(1) + O (h~),

which implies that

VP [E [Ti(yla0) | = £(w0) [L(wlao) + oy (3 ) Mao 1)
O (Viheymnt 1)) Rk, () o(1) = 0.

Define now the covering number N (F, L2(Q), 7) as the minimal number of Ly(@Q)-balls of radius

7 needed to cover the class of functions F and the uniform entropy integral as

J(8,F, Ls) : f \/log sup N(F, Lo(Q), 7| Fllo.2) dr
QeQ

where Q is the set of all probability measures @ for which 0 < |F HZN = {F2dQ < oo and F is

an envelope function for the class F.
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Let P be the distribution measure of (Y, X), and denote the expected value under P, the

empirical version and empirical process as follows

Pfim [fdP. Pufim D3 F(RX0), Gof = ValPy— P)S,

i=1

for any real-valued measurable function f : R¢ x R? — R.

We introduce our sequence of classes F,, on R% x R? as
n

Fo = {w,2) = fay(u,2), ye (0,71}

where

n
fn,y(ua Z) = EhpKh(xo - Z)]l{l—Fl(uﬂz)ék/nyl Or ... Or 1—Fy(ug|2)<k/nyq}-

Denote also by F, an envelope function of the class F,,. Now, according to Theorem 19.28 in

van der Vaart (1998), the weak convergence of the stochastic process (A.2) follows from the

following four conditions. Let p;, be a semimetric, possibly depending on x, making [0,T 14

totally bounded. We have to prove that

sup P(fny— fn’y/)2 —> 0 for every d, \, 0,
Pz (Y5y')<on

PE; = O),
PF,%]I{FHX\/H} — 0 for every ¢ > 0,

J(On, Fny La) —> 0 for every 6§, \, 0.

We start with proving (A.3). We have

Plfny = JoyV = | K@’}
Sk

But, for any 2’ € Sx

2
E |:<]1An/k,y - HAn/k,y’) X = :c’] = P (Aniy © Anjiy
P ({An/k,y v An/k,y’}\{An/k,y N An/k,y’}

24

2
E {(ﬂAn/k,y - ﬂAn/k,y/) X = 20 — hu] f(zo — hu)du.

X = m’) —P (An/k,y N Ay

sz/).

X:x’)

(A7)



Using the same notation as in the proof of Lemma 2.2, we have

d d
Anjiy O Anjiy = { U 4ng, ,J} N { L_J Ak, J}

U { n/hysg O An/ky! %}

=1

{An/k,yj q0 An/k,y;,j}

Il
C&

<.
Il
—

U
=

<.
Il
—

A

Il
=

n/kvy] Ay;‘ 7.]"

<.
Il
—

Then, with A¢ denoting the complement of any set A, it follows that

d
AN/k,yj vy ,J} ﬂ { ﬂ Afl/k’,yj AYS J}

{An/k,y Y An/k,y’}\{An/k,y N An/k,y’} = {
j=1

<.
Il ( SH
—

A

I N
C=~1C=
—_—A— —_——
3|

&
n/kyjvys.g O An/layj A ,j}

<.
Il
_

k
n

(i ) < 1- F(YOIX) < gy v y;->}.

<.
Il
_

Returning now to (A.7), we have

({A”/k y Y An/ky }\{An/k,y N An/k,y’} }X = x,)

d d
| K k
Z ( (yj A ) < 1= F(YD1X) < —(y; v 0) !X—w’> <= lwi =yl

Thus, defining

U

pzo (U, Z

also called the Manhattan distance on R?, which is clearly a semimetric making [0, T]? totally
bounded, we have proven (A.3).

We define now the envelope functions

n
Fu(u, 2) := | 2 WP En(0 = 2) 117y (ua|2)<k/nT OF .. OF 1-Fy(ugle)<k/n T}
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With yr := (T,...,T), assertion (A.4) results from Lemma 2.1 since
S
d times
Sk

L(yr|zo) f(z0)| K|35 + o(1).

For (A.5), note that we have {F,, > e/n} = {(F,/ey/n)¢ > 1} for any & > 0, thus

1
PF g oom < €£n5/2ppg+s

_ 1 n 5/2 2+§n _
= <W> fSK K(u) EP(An/k,yHX =z — hu) f(xg — hu)du

(Vi) (1K 121 wrlao) f(wo) + 0(1)) (48)

where the right-hand side converges towards 0 since kh? — o0 and K satisfies Assumption (K;).

Finally, it remains to prove (A.6). Define the following class of functions on R% x R?

F o= {(U, 2) = W py(uy|2)<y1 O ... OF 1=Fy(ug|z)<ya}> Y € Ri}

= {(U,Z) - ﬂ{1,.<y1 or ... Or 1—-<yq} © (Flv'” 7Fd)(u72)7 YyEe Ri} :

Let’s focus for a moment on the class of functions on [0, 1]%

d
{u - H{1*u1<y1 Or ... O 1—ug<yq}r Y€ R+} .

Since this is a family of indicator functions, it is a V C-class if and only if the family of sets asso-
ciated to the indicator functions is a V' C-class of sets. The latter sets can be easily represented
as the union of d VC-classes of sets and thus it is also a V C-class of sets (see Lemma 2.6.17 (iii)
in van der Vaart & Wellner, 1996). Next, according to Lemma 2.6.18 (vii) in van der Vaart &
Wellner (1996), it follows that F is a VC-class with VC-index V fixed. Define now

~

Fn = {(uvz) = 15y (uaf2)<k/nys OF ... OF 1=Fy(ualz)<k/nya}» Y € [O’T]d}’

and the envelope function Fj,(u, z) 1= W1 Fy (ur|2)<k/nT OF ... OF 1—Fy(ug|z)<k/nT}- Lhe previous

arguments for F remain, thus we have that .7?” is also a V C-class with VC-index V. According
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to Theorem 2.6.7 in van der Vaart & Wellner (1996), there exists a universal constant C' such
that for Q the set of all probability measures on R% x R? and any 0 < 7 < 1
N N 2(V—1)
sup N(F, L@l Filo) < V16 (1)
QeQ T

Next, we retrieve F,, by multiplying the previous family with one single function, i.e.

]:n = {z — \/mKh(xO - Z)} X ]t;n

Since only one ball is needed to cover the class {z — +/nh?/kK}(xo — z)} whatever the measure
Q@ € Q, according to the last inequality in the proof of Theorem 2.10.20 in van der Vaart &
Wellner (1996)

1\ 20V-1) NV
sup N (Fn, L2(Q), 7| Fullg2) < CV (16e)V <> =1L () .
00 T T

Thus, (A.6) is established since for any sequence d,, \, 0 and n large enough, we have

On
J(0p, FnyLa) < L Vlog(L) — Vlog(t)dr = o(1).

Finally, we consider the process (3). Straightforward calculations give the following decomposi-

tion

N (Tk@'l’) ~ Llylao) = az, () May <y>>

fn(x[)) k
_@ T (ylzo) — flx T « n - pM £ (w0 — f(x
= F1a0) (Tk(y\ 0) — f(z0) [L(yl 0) + Qg (k)Mm(y)]) mfn(xo)f(:co)(fn( o) — f(z0)).

Note that for the first term in the right-hand side of the above display we have just established
the weak convergence as a stochastic process (apart from the factor 1/f(x¢)), whereas for the

second term we have essentially to study vkh?( ﬁl(:co) — f(zo)). The latter can be rewritten as

VERP(fo(0) = f(w0)) = \/Em(ﬁz(wo) — f(0))-

Under our assumptions on K and f one can easily verify that vnh?( f";l(xg) — f(zg)) = Op(1)

(see e.g. Parzen, 1962) and hence the theorem follows.
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A.4 Proof of Theorem 2.2

Let
T, :={965n:0€0,0€ H},

where for 6 € © :=[0,T]%, and § € H := {6 = (J1,...,64); §; : R x Sx — R} with

n
gos5n(u,2) = EhPKh(xg — 2)qo.5,n (U, 2)

n
EhpKh(xO — 2) 15, (ur,2)<k/n 1 OF ... O 1—54(uq,z)<k/nOa}-

For convenience, denote d,, := (ﬁn,la ey ﬁ’md) and &g := (F1y,..., F;). According to Lemma 2.3,
r1|8, — 0| converges in probability towards the null function Hy := {0} in H endowed with the

norm ||0] g = Zle [0illoo- In order to apply Theorem 2.3 in van der Vaart & Wellner (2007),

we have now to show
Assertion 1: supyeg v/nPG,(0,a,) — 0 for every a,, — 0,
Assertion 2: supyeg |GnGn(6,a)l 2, 0, for every a > 0,

where G, (0, a) is an envelope function for the class
gn(97 a) = {99,§0+rn6,n —90,60,n * o€ H, H(sHH < a} .

Proof of Assertion 1. Using the ideas of the proof of Theorem 2.1, for any é € H such that

[0l < a

|q9,50+7‘n5,n - q9,50,n|(u’ Z) < ]l{k/n 01—rna<l—Fi(ui|z)<k/nO1+rna OT ... OT k/nbs—rpa<l—Fg(ug|z)<k/nbOg+rna}

=: ]an,Q,u. (u? Z)'
Thus, we set Gy, (0, a)(u, 2) := \/(nh?/k)Ky(xo — 2)1B, , ,(u, 2) and we have
hP
VnPG,(0,a,) =n " K(u)P (Bpg.a, | X = 20— hu) f(zo — hu)du,
Sk
with
d .
P(Bnga, | X =20 —hu) < 2 P (k/nej —rpan <1 — Fj(Y(J)|X) <k/nb;+ rpan | X = x9 — hu)
j=1
< 2drpan. (A.9)
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Hence,

supv/nPGy(0,a,) < 2dn\/frnan(f(xo) +0(1)) — 0, (A.10)

6e©

and the assertion follows.
Proof of Assertion 2. The idea is to apply Lemma 2.2 in van der Vaart & Wellner (2007).
Now we work with the class of functions {Gn(ﬂ, a), 6 €0, T]d}, for any a > 0 with the envelope

function

n
En(ua Z) = %h’pKh(xO - Z)H{I—Fl(ul\z)ék/nT—&-rna Or ... O 1—Fy(uq|z)<k/nT+rna}:

Consequently, we have first to prove that

zug PG,(0,a)? — 0, (A.11)
€

PE? = 0(1), (A.12)
PE,?L]l{En>€\/E} — 0 for every € > 0. (A.13)

For what concerns condition (A.11), we have according to (A.9)

PGn(0,0)? = K(u)Z%P (Buga |X = 20 — hu) f(zo — hu)du
Sk
< ZdErna K(u)?f(zo — hu)du
k Sk
n
= QdETna (f(mo)HKﬂg + 0(1)) .

We have that r,n/k — 0 since n+/hP/kr, converges and kh’ — o0, and as such (A.11) is
established.
By the first order condition, we have

n
PE. = p K(U)QEP (An/k,yTJr(n/k)T’nya | X =m0 — hu) f(zo — hu)du
K

= L(yrlwo) f(z0) | K3 + o(1),

where y, := (a,...,a) € R% and (A.12) follows.
Now we verify condition (A.13). For any £ > 0 we obtain the following inequality

1
2 2+¢
PENp0m < PP

1 d
€€ (khp)E/2

< (7 + ruga) (IKI5EEF (o) + 0(1)).
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which tends to zero under the assumptions of the theorem.

It remains to show that
J(dp,{Gn(0,a):0€ O}, Ly) —> 0 forall d, \,0.
To deal with the uniform entropy integral, we can reuse the lines of proof of Theorem 2.1 by
considering the following class of functions on [0, 1]¢
{U - ]l{yl <1—ui<ys OF ... OF yog_1<l—ug<yag}r Y1 < Y2,---,¥Y2d—-1 < de}a

which is a V C-class since the class of sets associated to the indicator functions is a V C-class
of sets as the union of d VC-classes of sets. This allows us to prove that there exist positive

constants C and V such that

1 1%
sup N([Gi(6,0) 16 € ©)  La(@) 7l Bulloa) < € (7))
QeQ T

from which the last assertion follows. This achieves the proof of Theorem 2.2.

A.5 Proof of Theorem 2.3
Due to the decomposition (4), we have to prove that

sup w/“’pE[jqz ylzo) — 7%(|1@)]‘ o(1).

ye[0,T]4

According to the notation in the proof of Theorem 2.2, note that vkh?E ka — ka (y|zo)

=i

— K (20 — X1
- n(o ) {

equals

n
—hp — ~ ~
Z |: h Kh o Xl)]l{l—Fn,l()/;(l)|Xi)<k/ny1 or ... or 1—Fn,d(Yi(d)|X1‘)<k/nyd}

1-F (Y [X;)<k/ny: OT ... Or l—Fd(Yi(d)X-;)Sk/nyd}:| H
< VRE[|gys,n(Y1, X1) = gy50m (Y1, X1)[]

< \/ﬁPGn(y7 a)a

for n large enough, since with probability tending to 1, &, € do + 7,(0, a) where B(0,a) := {6 :
|0]lr < a}, and by using the Skorohod representation. This implies that

sup VEKhPE HTk - TkH (y|lzo) < sup /nPGy(y,a) — 0,
yel0,T]? ye[0,T]¢
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by Assertion 1 since it is clear that a, — 0 can be replaced by any fixed value @ in (A.10) and

conclude with the fact that nr,+/h?/k — 0.

Finally,

{\/m (W - L(y|x0) — Qg (%) Mxo(y>> y Y€ [OvT]d} ’

n($0)

can be handled using the same arguments as those at the end of the proof of Theorem 2.1.
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Figure 1: Model 1: Sample mean of L (y|0.2) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 2: Model 1: Sample mean of Ly (y|0.5) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 3: Model 1: Sample mean of Ly (y|0.8) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 4: Model 2: Sample mean of L (y|0.2) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 5: Model 2: Sample mean of L (y|0.5) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 6: Model 2: Sample mean of Ly (y|0.8) as a function of k with, from left to right and up
to down, y =y, t = 1,...,9, respectively. The true value of the parameter is represented by a

full horizontal black line.
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Figure 7: Model 1: Absolute bias and MSE as a function of k for different covariate positions

x = 0.2 (full line), 0.5 (dashed line), 0.8 (dotted line).
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Figure 8: Model 2: Absolute bias and MSE as a function of k for different covariate positions

x = 0.2 (full line), 0.5 (dashed line), 0.8 (dotted line).
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Figure 9: Air pollution data: Estimates median{L(0.5,0.5|x),k = n/4,...,n/2} of L(0.5,0.5|z)
for stations in California on January 15, 2007 (left) and June 15, 2007 (right).
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Figure 10: Air pollution data: Time plot of the estimate 2 x median{L(0.5,0.5|z),k =
n/4,...,n/2} of the conditional extremal coefficient at Fresno (left) and Los Angeles (right)

over the year 2007.
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Figure 11: Air pollution data: Estimate of the Pickands dependence function median{Lz(¢,1 —
t|z),k = n/4,...,n/2} for Fresno (top) and Los Angeles (bottom) on January 15, 2007 (first

column) and June 15, 2007 (second column).
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